京公网安备 11010802034615号
经营许可证编号:京B2-20210330
四个大数据神话必须打破
迄今为止,大数据一直都存在争议。似乎每家软件厂商、每家咨询公司,以及每个思想领袖都在尝试着对“大数据”做出准确的定义。尽管目前还没有出现这样的定义,但是打破关于大数据的神话将有助于我们认识大数据。
神话1:你能够获得所有的数据
在许多方面,我们正生活在一个前所未有的时代当中。我们从来都没有像现在这样能够获得如此多的数据。此前一直被人们所忽视的兆字节、拍字节和艾字节数据如今已经出现了。在如今的工业化社会中,平均每个人一天所消费的信息量超过了生活在十五世纪的人一生所消费的信息量。
目前还没有一个人或一家公司能够存储和检索关于某一特定主题的全部数据,更不要说是所有数据了,包括谷歌在内。谷歌索引的只是表层网中的信息,而不是深层网中的信息。专家估测,后者的规模是前者的25倍。因此,在我们进行搜索时,我们所获得的信息量仅仅是互联网信息量中的4%~6%。
神话2:你需要所有的数据
毫无疑问,数据越多帮助越大,但这并不意味着在做商业决策时你需要所有的数据。正在高效利用大数据的公司已经认识到,他们不需要获得所有的相关信息。
几乎每天都会涌现出大量新的数据源,但是并不是所有的数据都有价值。例如,电子邮件信息常常为我们提供了洞察企业状况的宝贵信息。精明的公司正在挖掘个人信息,以评估员工的情绪,以及谁可能会辞职。但这并不是说所有的电子邮件都具有相同的价值。因为分析垃圾邮件没有任何意义。你并不需要所有的数据。数据当然是越多越好,但是请不要浪费时间尝试做这一不可能实现的事情。
神话3:大数据会给我们明确的答案
我们经常听到这样一句商业格言是“处理你能够处理的数据,并从中获得更多信息。”我们在利用所获信息做商业决策时会遇到许多问题。实际上,我们根本无法利用这些信息完全准确地预测出公司的并购、产品的发布、新的风险投资,以及员工入职等情况。
但这并不是说,存在不确定性,大数据就不能为我们提供帮助了。请不要将减少不确定性和消除不确定性混为一谈。大数据能够帮助我们消除不确定性的这一天还没有到来,可能这一天永远也不会到来。对海量非结构性数据进行分析或许能够帮助公司更好的理解客户的情绪。但是请不要误认为大数据能够为我们排除所有的可能性。生命的无常和业务的起伏将会破坏我们制订出的完美计划。
神话4:大数据只是昙花一现
Nate
Silver可以说是大数据领域中的代表人物,至少在他离开《纽约时报》之前是这样。在2012年的美国总统大选中,尽管许多人预测奥巴马和罗姆尼在得票率方面将旗鼓相当,但是身为统计学家的Silver却预测,奥巴马将以90%的选举人票赢得2012年的美国总统大选。由于Silver的预测模型极为精准,以至于如今许多人在遇到事情后都来向他寻求帮助。
虽然大数据和数据科学的定义在今后几年仍然不会确定下来,但是可以肯定的是,人们在2013年消费的数据量超过了2012年所消费的数据量。许多公司已经认识到了大数据的重要性,拒绝大数据可能将会导致公司在竞争中被淘汰出局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29