
关联规则评价
前面我们讨论的关联规则都是用支持度和自信度来评价的,如果一个规则的自信度高,我们就说它是一条强规则,但是自信度和支持度有时候并不能度量规则的实际意义和业务关注的兴趣点。
一个误导我们的强规则
看这样一个例子,我们分析一个购物篮数据中购买游戏光碟和购买影片光碟之间的关联关系。交易数据集共有10,000条记录,其中购买6000条包含游戏光碟,7500条包含影片光碟,4000条既包含游戏光碟又包含影片光碟。数据集如下表所示:
|
买游戏 | 不买游戏 | 行总计 |
买影片 | 4000 | 3500 | 7500 |
不买影片 | 2000 | 500 | 2500 |
列总计 | 6000 | 4000 | 10000 |
假设我们设置得最小支持度为30%,最小自信度为60%。从上面的表中,可以得到:support(买游戏光碟—>买影片光碟)=4000/10000=40%,confidence(买游戏光碟—>买影片光碟)=4000/7500*100%=66%(写错了,应该是4000/6000)。这条规则的支持度和自信度都满足要求,因此我们很兴奋,我们找到了一条强规则,于是我们建议超市把影片光碟和游戏光碟放在一起,可以提高销量。
可是我们想想,一个喜欢的玩游戏的人会有时间看影片么,这个规则是不是有问题,事实上这条规则误导了我们。在整个数据集中买影片光碟的概率p(买影片)=7500/10000=75%,而买游戏的人也买影片的概率只有66%,66%<75%恰恰说明了买游戏光碟抑制了影片光碟的购买,也就是说买了游戏光碟的人更倾向于不买影片光碟,这才是符合现实的。
从上面的例子我们看到,支持度和自信度并不能过成功滤掉那些我们不感兴趣的规则,因此我们需要一些新的评价标准,下面介绍六中评价标准:相关性系数,卡方指数,全自信度、最大自信度、Kulc、cosine距离。
相关性系数lift
从上面游戏和影片的例子中,我们可以看到游戏和影片不是正相关的,因此用相关性度量关联规则可以过滤这样的规则,对于规则A—>B或者B—>A,lift(A,B)=P(A交B)/(P(A)*P(B)),如果lift(A,B)>1表示A、B呈正相关,lift(A,B)<1表示A、B呈负相关,lift(A,B)=1表示A、B不相关(独立)。实际运用中,正相关和负相关都是我们需要关注的,而独立往往是我们不需要的,两个商品都没有相互影响也就是不是强规则,lift(A,B)等于1的情形也很少,一般只要接近于1我们就认为是独立了。
注意相关系数只能确定相关性,相关不是因果,所以A—>B或者B—>A两个规则的相关系数是一样的,另外lift(A,B)=P(A交B)/(P(A)*P(B))=P(A)*P(B|A)/(P(A)*P(B))=P(B|A)/P(B)=confidence(A—>B)/support(B)=confidence(B—>A)/support(A)。
卡方系数
卡方分布是数理统计中的一个重要分布,利用卡方系数我们可以确定两个变量是否相关。卡方系数的定义:
公式中的observed表示数据的实际值,expected表示期望值,不理解没关系,我们看一个例子就明白了。
|
买游戏 | 不买游戏 | 行总计 |
买影片 | 4000(4500) | 3500(3000) | 7500 |
不买影片 | 2000(1500) | 500(1000) | 2500 |
列总计 | 6000 | 4000 | 10000 |
上面表格的括号中表示的是期望值,(买影片,买游戏)的期望值E=6000*(7500/10000)=4500,总体记录中有75%的人买影片,而买游戏的有6000人,于是我们期望这6000人中有75%(即4500)的人买影片。其他三个值可以类似计算得到。现在我们计算一下,买游戏与买影片的卡方系数:
卡方系数X=(4000-4500)^2/4500+(3500-3000)^2/3000+(2000-1500)^2/1500+(500-1000)^2/1000=555.6。
卡方系数需要查表才能确定值的意义,基于置信水平和自由度(r-1)*(c-1)=(行数-1)*(列数-1)=1,查表得到自信度为(1-0.001)的值为6.63,555.6大于6.63,因此拒绝A、B独立的假设,即认为A、B是相关的,而expected(买影片,买游戏)=4500>4000,因此认为A、B呈负相关。这里需要一定的概率统计知识。如果觉得不好理解,可以用其他的评价标准。
全自信度
全自信度all_confidence的定义如下:all_confidence(A,B)=P(A交B)/max{P(A),P(B)}
=min{P(B|A),P(A|B)}
=min{confidence(A—>B),confidence(B—>A)}
对于前面的例子,all_confidence(买游戏,买影片)=min{confidence(买游戏—>买影片),confidence(买影片—>买游戏)}=min{66%,53.3%}=53.3%。可以看出全自信度不失为一个好的衡量标准。
最大自信度
最大自信度则与全自信度相反,求的不是最小的支持度而是最大的支持度,max_confidence(A,B)=max{confidence(A—>B),confidence(B—>A)},不过感觉最大自信度不太实用。
Kulc
Kulc系数就是对两个自信度做一个平均处理:kulc(A,B)=(confidence(A—>B)+confidence(B—>A))/2。,kulc系数是一个很好的度量标准,稍后的对比我们会看到。
cosine(A,B)
cosine(A,B)=P(A交B)/sqrt(P(A)*P(B))=sqrt(P(A|B)*P(B|A))=sqrt(confidence(A—>B)*confidence(B—>A))
七个评价准则的比较
这里有这么多的评价标准,究竟哪些好,哪些能够准确反应事实,我们来看一组对比。
|
milk | milk | 行总计 |
coffee | MC | MC | C |
coffee | MC | MC | C |
列总计 | M | M | total |
上表中,M表示购买了牛奶、C表示购买了咖啡,M表示不购买牛奶,C表示不购买咖啡,下面来看6个不同的数据集,各个度量标准的值
数据
|
MC | MC | MC | MC | total | C->M自信度 | M->C自信度 | 卡方 | lift | all_conf | max_conf | Kulc | cosine |
D1 | 10000 | 1000 | 1000 | 100000 | 112000 | 0.91 | 0.91 | 90557 | 9.26 | 0.91 | 0.91 | 0.91 | 0.91 |
D2 | 10000 | 1000 | 1000 | 100 | 12100 | 0.91 | 0.91 | 0 | 1.00 | 0.91 | 0.91 | 0.91 | 0.91 |
D3 | 100 | 1000 | 1000 | 100000 | 102100 | 0.09 | 0.09 | 670 | 8.44 | 0.09 | 0.09 | 0.09 | 0.09 |
D4 | 1000 | 1000 | 1000 | 100000 | 103000 | 0.50 | 0.50 | 24740 | 25.75 | 0.50 | 0.50 | 0.50 | 0.50 |
D5 | 1000 | 100 | 10000 | 100000 | 111100 | 0.91 | 0.09 | 8173 | 9.18 | 0.09 | 0.91 | 0.50 | 0.29 |
D6 | 1000 | 10 | 100000 | 100000 | 201010 | 0.99 | 0.01 | 965 | 1.97 | 0.01 | 0.99 | 0.50 | 0.10 |
我们先来看前面四个数据集D1-D4,从后面四列可以看出,D1,D2中milk与coffee是正相关的,而D3是负相关,D4中是不相关的,大家可能觉得,D2的lift约等于1应该是不相关的,事实上对比D1你会发现,lift受MC的影响很大,而实际上我们买牛奶和咖啡的相关性不应该取决于不买牛奶和咖啡的交易记录,这正是lift和卡方的劣势,容易受到数据记录大小的影响。而全自信度、最大自信度、Kulc、cosine与MC无关,它们不受数据记录大小影响。卡方和lift还把D3判别为正相关,而实际上他们应该是负相关,M=100+1000=1100,如果这1100中有超过550的购买coffee那么就认为是正相关,而我们看到MC=100<550,可以认为是负相关的。
上面我们分析了全自信度、最大自信度、Kulc、cosine与空值无关,但这几个中哪一个更好呢?我们看后面四个数据集D4-D6,all_conf与cosine得出相同的结果,即D4中milk与coffee是独立的,D5、D6是负相关的,D5中support(C–>M)=0.91而support(M–>C)=0.09,这样的关系,简单的认为是负相关或者正相关都不妥,Kulc做平均处理倒很好,平滑后认为它们是无关的,我们再引入一个不平衡因子IR(imbalance ratio):
IR(A,B)=|sup(a)-sup(B)|/(sup(A)-sup(B)-sup(A交B))(注:应为(sup(A)+sup(B)-sup(A交B))
D4总IR(C,M)=0,非常平衡,D5中IR(C,M)=0.89,不平衡,而D6中IR(C,M)=0.99极度不平衡,我们应该看到Kulc值虽然相同但是平衡度不一样,在实际中应该意识到不平衡的可能,根据业务作出判断,因此这里我们认为Kulc结合不平衡因子的是较好的评价方法。
另外weka中还使用 Conviction和Leverage。Conviction(A,B) = P(A)P(B)/P(AB), Leverage(A,B) = P(A交B)-P(A)P(B),Leverage是不受空值影响,而Conviction是受空值影响的。
总结
本文介绍了9个关联规则评价的准则,其中全自信度、最大自信度、Kulc、cosine,Leverage是不受空值影响的,这在处理大数据集是优势更加明显,因为大数据中想MC这样的空记录更多,根据分析我们推荐使用kulc准则和不平衡因子结合的方法
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19