京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谈大数据分析之前我想应该说一说统计学。统计学到底是怎样一种学问呢。先看看我们的周围,其实有无限多的数据。所谓数据呢就是一系列数字的集合或者符号的集合体。我们傻傻的看着这些数据也看不出什么。所以我们会看一些数据的个数,平均,倾向,分类等才能了解数据的性质。
那么看数字数据,基本上会有一定的不确定性,比如学校的考试大家得分都是一样的话算平均值,排名次就根本没有意义了。统计学就是一个被体系化的方法论,它用来查看零散的有不确定性数据的性质,从大的数据(总体)取出一部分(样本),查看它的性质,推测原来的大的数据的性质等。
统计学体系可以分为两大类,一个是描述统计学,另一个是推论统计学。把一些数据收集到一起,作图作表,求平均值或者看倾向这些叫做描述统计学。从总体取出一部分样本,通过样本的特点去推论总体的特点,这种推论的统计叫做推论统计学。
为什么统计学现在这么火
由于大数据的出现统计学更加引人注目。理由很简单,就是利用统计学方法分析大数据,在计划经营战略,市场战略,开发新产品,新业务的时候取得了有效成果。经营不只是靠感觉,靠经验,靠勇气的东西了,而是根据以数据为基础的科学分析方法来进行决策。
其实统计学与数学在对立的位置。统计学与数学感觉上很相似,不过他们正好是相反的学问。为什么这么说,数学在大多数情况下有公理,有定理,能得到确切的答案,是一种演绎伦理。而统计学是从数个零散的数据当中推论出总体性质的归纳推理的方式。英国的约翰·格朗特(1620-1674)在 1662年发表了《关于死亡公报的自然和政治观察》的论著。书中分析了60年间伦敦居民死亡的原因及人口变动的关系,首次提出通过大量观察,可以发现新生儿性别比例具有稳定性和不同死因的比例等人口规律,对死亡率与人口寿命作了分析,从而统计学才引起了普遍的关注。近些年,由于信息技术的发展迅速,通过分析大量数据有助于企业的经营,从而统计学得到了人们的注目。
大数据时代的统计学
当我们进入大数据时代之后统计学有了什么样的变化呢?如果我们能够分析总体的话就没有必要分析一部分的样本了。但是在调查市场的时候我们仍然采取抽查样本的方法。做市场调查的时候我们不可能调查所有的人,所以我们会调查一部分,比如调查1000人来推断总体的市场。但是除了样本以外我们不知道其他用户拥有什么样的特性,在过去的10年,20年里大量生产廉价的产品就能卖出去。不过在今天,消费需求越来越多样化,我们不得不分层了解市场,掌握目标群体的需求才能卖出去。并且互联网的发展不断再给消费市场带来变化,所以企业更是要时刻改变自己的经营战略。
在大数据时代最重要的是了解消费者想要的是什么。从以前的性别,年龄,居住地等这些数据来分析消费者的需求并不能实现一对一的市场营销。所以市场出现的根据个人的购买历史来显示广告,来推荐产品,来实现一对一的买卖。我相信今后这样的市场营销会更多,AI(人工智能)系统也会大量地在市场营销中被应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29