
R语言的数据导入与导出学习笔记
福尔·摩斯曾说过:“数据,数据,没有数据的推理是罪恶!”不过比起有意思的统计分析,数据的导入与导出显得十分的无趣,但是不得不说统计分析的数据导入与导出是个让人沮丧的任务,而且耗时巨大。
今天分享的是R中数据的输出与一些特定格式的数据读入。
一、数据的输出
R中提供了write.table(),cat()等函数来导出数据。不过值得指出的是R语言能够导出的数据格式是有限的,比如在基本包中,我们能够导出数据的格式只有txt,csv。
现在介绍一下两个函数的用法:
write.table(x, file = "", append =FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".",row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"),
fileEncoding = "")
write.csv(...)
write.csv2(...)
write.csv(),write.csv2()可以看做write.table()的变体,我们知道write.csv(),与参数sep=“,”的write.table()是等效的。下面介绍几个常见参数:
x:数据集
file:文件的路径,包括文件名如:”D:/R/data/data1.csv”
quote:数据在写入文件中时我们常用引号将其隔开,当参数为F时,文件中的数据不再用引号修饰
append:是否追加,如果文件名已存在而没有选择追加,那么文件将会被覆盖。(覆盖时是没有提示的,所以命名需要注意一些。
cat(... , file = "", sep = " ", fill = FALSE, labels = NULL, append = FALSE)
cat()作为一个输出函数与dos命令差不多,也是将数据集或数据写入文件中,常用参数和write.table()类似。
cat()函数用来输出,可以把多个参数连接起来再输出(具有paste()的功能)。例如:
> cat(c("AB", "C"),c("E", "F"), "n", sep="/ ")
AB/ C/ E/ F/ n
还可以指定一个参数file=给一个文件名,可以把结果写到指定的文件中,如: > cat("i = ", 1, "n", file="d:/R/data2.txt")如果指定的文件已经存在则原来内容被覆盖。加上一个append=TRUE参数可以不覆盖原文件而是在文件末尾附加,这很适用于运行中的结果记录。
当然cat()的用法比较丰富,也可以用来查看文件,与format合用控制输出格式等。
二、数据的导入
先介绍R中基本的读取数据函数read.table()的用法:
read.table(file, header = FALSE, sep = "", quote = "\"'", dec = ".", row.names, col.names, as.is = !stringsAsFactors, na.strings = "NA", colClasses = NA, nrows = -1, skip = 0, check.names = TRUE, fill = !blank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE, comment.char = "#", allowEscapes = FALSE, flush = FALSE, stringsAsFactors = default.stringsAsFactors(), fileEncoding = "", encoding = "unknown", text) read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".", fill = TRUE, comment.char="", ...) read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",", fill = TRUE, comment.char="", ...) read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".", fill = TRUE, comment.char="", ...) read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",", fill = TRUE, comment.char="", ...)
介绍常用参数:
File:文件路径,可以用绝对路径也可以用相对路径,R的工作目录你可以使用getwd()来查看,用setwd()来改。
Header:读取文件的第一行是否用作变量名
Sep:分隔符,参数为“,“时等价于read.csv()
Scan()函数也是一个读取数据比较好的函数,但是参数较为复杂,我们可以说,read.table()函数是scan函数的设定好部分参数的结果。
Read.delim()这个可以读到剪贴板的东西,用法为read.delim(clipboard)其他参数与read.table相同。
Read.fwf()读取固定长度的数据,也可以利用这个特性截去数据的尾巴或者表格的尾巴。
自带的foreign包可以实现s-plus,sas,spss,stata的数据读入。以读stata数据为例:
>Read.dta(“d:/R/data3.dta”)其他参数与read.table也是一样的。
遗憾的是,基本包与foreign包都没有办法读取excel的数据。但这并不代表我们没办法读取excel的数据。例如我们可以将excel的数据放在剪贴板中,通过read.delim(clipbroad)来读取。也可以将excel表格变成csv格式的再处理。最后指出,R中的gdata包的read.xls函数以及RODBC包中也有相应的处理函数。
本文的最后,运用R语言的帮助文档《R数据的导入与导出》中的一段话作为结束:“In general, statistical systems like R arenot particularly well suited to manipulations of large-scale data. Some othersystems are better than R at this, and part of the thrust of this manual is tosuggest that rather than duplicating functionality in R we can make anothersystem do the work! (For example Therneau & Grambsch (2000) commented thatthey preferred to do data manipulation in SAS and then use packagesurvivalin S for the analysis.)”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27