京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		SQL中的左外连接和+号的用法
Oracle 左连接、右连接、全外连接、(+)号作用
Oracle 外连接
	(1)左外连接 (左边的表不加限制)
       (2)右外连接(右边的表不加限制)
       (3)全外连接(左右两表都不加限制)
外连接(Outer Join)
outer join则会返回每个满足第一个(顶端)输入与第二个(底端)输入的联接的行。它还返回任何在第二个输入中没有匹配行的第一个输入中的行。外连接分为三种: 左外连接,右外连接,全外连接。 对应SQL:LEFT/RIGHT/FULL OUTER JOIN。 通常我们省略outer 这个关键字。 写成:LEFT/RIGHT/FULL JOIN。
	
在左外连接和右外连接时都会以一张表为基表,该表的内容会全部显示,然后加上两张表匹配的内容。 如果基表的数据在另一张表没有记录。 那么在相关联的结果集行中列显示为空值(NULL)。
	对于外连接, 也可以使用“(+) ”来表示。 关于使用(+)的一些注意事项:
       1.(+)操作符只能出现在where子句中,并且不能与outer join语法同时使用。
       2. 当使用(+)操作符执行外连接时,如果在where子句中包含有多个条件,则必须在所有条件中都包含(+)操作符
       3.(+)操作符只适用于列,而不能用在表达式上。
       4.(+)操作符不能与or和in操作符一起使用。
       5.(+)操作符只能用于实现左外连接和右外连接,而不能用于实现完全外连接。
在做实验之前,我们先将dave表和bl里加一些不同的数据。 以方便测试。
SQL> select * from bl;
ID NAME
---------- ----------
1 dave
2 bl
3 big bird
4 exc
9 怀宁
SQL> select * from dave;
ID NAME
---------- ----------
8 安庆
1 dave
2 bl
1 bl
2 dave
3 dba
4 sf-express
5 dmm
2.1 左外连接(Left outer join/ left join)
left join是以左表的记录为基础的,示例中Dave可以看成左表,BL可以看成右表,它的结果集是Dave表中的数据,在加上Dave表和BL表匹配的数据。换句话说,左表(Dave)的记录将会全部表示出来,而右表(BL)只会显示符合搜索条件的记录。BL表记录不足的地方均为NULL.
示例:
SQL> select * from dave a left join bl b on a.id = b.id;
	
ID NAME ID NAME
--------- ---------- ---------- ----------
1 bl 1 dave
1 dave 1 dave
2 dave 2 bl
2 bl 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm -- 此处B表为null,因为没有匹配到
8 安庆 -- 此处B表为null,因为没有匹配到
SQL> select * from dave a left outer join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
1 bl 1 dave
1 dave 1 dave
2 dave 2 bl
2 bl 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm
8 安庆
用(+)来实现, 这个+号可以这样来理解: + 表示补充,即哪个表有加号,这个表就是匹配表。所以加号写在右表,左表就是全部显示,故是左连接。
SQL> Select * from dave a,bl b where a.id=b.id(+); -- 注意: 用(+) 就要用关键字where
ID NAME ID NAME
---------- ---------- ---------- ----------
1 bl 1 dave
1 dave 1 dave
2 dave 2 bl
2 bl 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm
8 安庆
2.2 右外连接(right outer join/ right join)
和left join的结果刚好相反,是以右表(BL)为基础的, 显示BL表的所以记录,在加上Dave和BL 匹配的结果。 Dave表不足的地方用NULL填充.
示例:
SQL> select * from dave a right join bl b on a.id = b.id;
	
ID NAME ID NAME
---------- ---------- ---------- ----------
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
9 怀宁 --此处左表不足用Null 填充
已选择7行。
SQL> select * from dave a right outer join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
9 怀宁 --此处左表不足用Null 填充
已选择7行。
用(+)来实现, 这个+号可以这样来理解: + 表示补充,即哪个表有加号,这个表就是匹配表。所以加号写在左表,右表就是全部显示,故是右连接。
SQL> Select * from dave a,bl b where a.id(+)=b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
9 怀宁
2.3 全外连接(full outer join/ full join)
左表和右表都不做限制,所有的记录都显示,两表不足的地方用null 填充。 全外连接不支持(+)这种写法。
示例:
SQL> select * from dave a full join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
8 安庆
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm
9 怀宁
已选择9行。
SQL> select * from dave a full outer join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
8 安庆
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm
最初由 ghc_x 发布
[B]有两个表T1和T2,两个表除了主键索引外均无其他索引,这两个表由T1.F1(主键),T2.F2(主键)进行左连接,SQL语句有两种写法:
1. SELECT * FROM T1,T2 WHERE T1.F1=T2.F2(+)
2. SELECT * FROM T1 LEFT JOIN T2 ON T1.F1=T2.F2
当查看1的执行计划时发现T1为全表扫描,T2为索引扫描。
当查看2的执行计划时发现两个表均为全表扫描。
有人知道这是为什么吗? [/B]
	我一直以来也是认为这两种写法是一样的,没想到楼主特意去看了它们的执行计划,而且发现了它们的不同,这使得我比较惊讶。
按照书上的讲法,这两种写法是没有什么区别的,后一种写法只不过是前一种写法的新版本。
为什么两者的执行计划会不一样呢?
我仔细看了一下两者的执行计划,发现了为什么后一种要两个表都全表 扫描,而前一个表有一个索引扫描。
原来前者选择的优化器是RULE,而后者选择的优化器是CBO的ALL ROWS。
不过,似乎要后者的效率高。
1. SELECT /*+RULE*/ * FROM T1,T2 WHERE T1.F1=T2.F2(+)
	2. SELECT /*+RULE*/ * FROM T1 LEFT JOIN T2 ON T1.F1=T2.F2
这样再看下执行计划吧
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28