京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下所面临的安全挑战
在数年前,开始讨论虚拟化时,就注定了云的解决方案的诞生,而当云的解决方案逐渐成熟时,企业或是用户开始将资料往云端存放时,也慢慢的导致大数据时代的来临。
目前存取资料的装置,慢慢的从电脑,开始往移动装置,搭捷运时,我们看到越来越多人习惯拿出手机,或是平版电脑,开始阅读,或是浏览相关的资讯,这意味着资料的存取从以往的定时定点到目前的随时随地,这是一个演变。
而当我们开始使用 gmail、facebook、google 的时候,似乎我们可以无止境的将各种资料上传,随时可以调阅,浏览等等,这也表示在云端后端的数据,已经大量的成长。
在这状况下的安全呢?这些大数据下的服务,不论公开服务也好,或是企业的各种资料也好,一旦开放存取,就开始存在安全的议题,简单来说,从使用者的认证问题来保护使用者,一直思考如何保护这些包括敏感或是不敏感的个人资料等等,这个议题也开始逐渐发酵。
当我们回归到基本的元素时,我们会发现当下的各种攻击,90%均透过网路达成,网络已经变成攻击里面不可或缺的媒介。是的,当某个企业被 APT
攻击,大量取得资料后,分析的结果,恶意程式可能利用邮件,透过网路传递至企业内部,日前吵的沸沸扬扬的网军攻击事件等等,大部分均以网路攻击有关。
大数据下的安全所面临的挑战有:
1.后台系统的复杂性
在数据之上,往往有多种复杂的应用程式支撑,因此在於安全的考量上更为复杂。用户可能采用单存的 3 tier 架构,或是采取更复杂的 Web
Service 的服务架构等等。无论何种架构,主要的目的均在於对大量数据进行演算加值,并且提供各种介面或是结果给与使用者。
2.多方的网路存取
尽管后台的应用程式较为复杂,对於使用者或而言,最简洁的存取方式便是透过网路存取相关的服务,相对於前端存取网路的设备而言,通常会尽量包含允许各种不同
的装置存取服务。然而对於入侵者而言,这产生了一个极为便利的攻击方式,也就攻击者亦能透过各种路径尝试攻击整体服务,进而探索系统漏洞而进行深入攻击。
3.即时监控与回应
一旦大数据开始藉由服务提供给各种使用者,系统就开始产生各种的变化,包括数据的变化,以及各种应用的变化。在这种状况下,安全的场景也会跟随着变化,如是
否有人对应用进行字典攻击,阻断是攻击等等。当大量的资料开始移动时,以及随着使用的量增加时,即时的监控将会更加艰辛,主要是攻击者更容易夹杂在正常使
用者之间,对系统发动攻击。这会让系统管理人员疲於奔命,并且增加侦测的困难度,更遑论采取及时的对策。
在这些状况下,当我们思索着大数据下的安全时,就可以回归到最基础面,对于整体系统进行检测并且加强防御措施。
三个基础方向考虑大数据下的安全:
1.应用程式安全
数据一般并不会直接被使用,而是透过应用程式进行展示,从保护数据的观念开始,需要对前端的应用进行强化,因此企业可以在应用程式上线前,中,后,对各种开发的应用程式进行安全检测,同时也可以对已经上线的相关网页应用程式定期强化检测。
透过应用程式的安全检测,可以让企业对於使用数据的应用程式提供相对应的基本安全检测,并且做到资安的第一步。
2.网路安全防御系统
在应用程式之后的第二道关卡事实上便是网路。企业提供服务时,相对的提供各种的网路存取方式,企业可以考虑由强化网路安全开始做起,譬如在以往,仅在出口处
部署网路安全防御设备的想法,扩充到内部的系统架构中,也就是在内部也部署新一代的网路防御系统,有效的防御各种来至於网路的攻击。
3.智能安全分析系统
当大数据来临时,企业会与时渐进的开始部署各种安全措施,智能安全分析系统可作为企业的安全大脑,透过各种关连分析,判断是否可能遭受相关的攻击并且协助企
业提前进行反应。智能安全分析系统可以让企业由原来的被动是侦测,提高为主动是挖掘,甚至利用历史的资料进行威胁分析,藉此可以提早发现各种潜在可能的安全威胁。
大数据下的安全议题,并非是一个封闭而且可透过单一解决方案达成的问题,各个企业可以根据本身的数据性质,以及使用情境,搭配相关
不同的解决方案。譬如,在各种主机上,可能依然存在有 SSO
的机制,可能依然会有主机安全解决方案,防毒解决方案等等。因此,建议用户从基础的防御开始,譬如基本的应用程式安全,以及基础的网路安全开始出发,接
着,再透过智能安全分析系统来协同运作各方的安全防御解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28