
R语言数组和矩阵
1 数组
数组可以看成一个由递增下标表示的数据项的集合,例如数值。
数组的生成
如果一个向量需要在R中以数组的方式被处理,则必须含有一个维数向量作为它的dim属性。
维度向量由dim()指定,例如,z是一个由1500个元素组成的向量。下面的赋值语句
> dim(z) <- c(3,5,100) 使它具有dim属性,并且将被当作一个3X5X100的数组进行处理。 c(3,5,100) 就是他的维度向量。
还可以用到像matrix()和array()这样的函数来赋值。比如
> array(1:20, dim=c(4,5))
> matrix(1:24, 3,4)
数据向量中的值被赋给数组中的值时,将遵循与FORTRAN相同的原则"主列顺序",即第一个下标变化的最快,最后的下标变化最慢。
数组的运算
数组可以在算数表达式中使用,结果也是一个数组,这个数组由数据向量逐个元素的运算后组成,通常参与运算的对象应当具有相同的dim属性。
2 数组的索引和数组的子块
数组中的单个元素可以通过下标来指定,下标由逗号分隔,写在括号内。
我们可以通过在下标的位置给出一个索引向量来指定一个数组的子块,不过如果在任何一个索引位置上给出空的索引向量,则相当于选取了这个下标的全部范围。
如a[2,,],a[,3,]等
3 索引数组
除了索引向量,还可以使用索引数组来指定数组的某些元素。
例如:有4X5的数组a,若要得到a中的a[1,3], a[2,2] 和a[3,1]这三个元素,可以生成索引向量i,然后用a[i]得到它们。
> a <- array(1:20,dim=c(4,5)) # Generate a 4 by 5 array.
> i <- array(c(1:3,3:1),dim=c(3,2))
> i
[,1] [,2]
[1,] 1 3
[2,] 2 2
[3,] 3 1
> a[i]
[1] 9 6 3
> a[i] <- 0 # 将这三个元素用0替换。
4 向量,数组的混合运算
表达式从左到右被扫描;
参与运算的任意对象如果大小不足,都将被重复使用直到与其他参与运算的对象等长;
当较短的向量和数组在运算中相遇时,所有的数组必须具有相同的dim属性,否则返回一个错误;
如果有任意参与运算的向量比参与运算的矩阵或数组长,将会产生错误;
如果数组结构正常声称,并且没有错误或者强制转换被应用于向量上,那么得到的结果与参与运算的数组具有相同的dim属性。
5 矩阵的运算
构建分区矩阵:cbind()和rbind(),cbind()按照水平方向,或者说按列的方式将矩阵连接到一起。rbind()按照垂直的方向,或者说按行的方式将矩阵连接到一起。
外积:操作符是%o%:
> ab <- a %o% b 或者
> ab <- outer(a, b, "*")
其中的乘法操作可以由任意一个双变量的函数替代。
广义转置:函数t(A),或aperm(A, c(2,1));
获取行数/列数:nrow(A)和ncol(A)分别返回矩阵A的行数和列数。
矩阵乘法:操作符为%*%;
交叉乘积(cross product):crossprod(X,Y)等同于t(X) %*% y,crossprod(X)等价于crossprod(X, X);
diag(v):如果v是向量,diag(v)返回一个由v的元素为对角元素的对角矩阵。
如果v为矩阵,diag(v)返回一个由v主对角元素组成的向量。
如果v只是一个数值,那么diag(v)是一个vXv的单位矩阵。
特征值和特征向量:eigen(Sm)。这个函数的结果是由名为values和vectors的两部分组成的列表。如果只是需要特征值:eigen(Sm)$values
最小二乘拟合即QR分解:lsfit(), qr()。
强制转换为向量:as.vector(),或者直接c().
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29