京公网安备 11010802034615号
经营许可证编号:京B2-20210330
所有的大数据都是有价值的吗
大数据不一定等同于好数据,且越来越多的专家也坚信这一点,大数据并不会自动产生好的分析结果。如果数据不完整、断章取义或者被破坏,可能会导致企业产生错误的决策,从而削弱企业的竞争力或影响用户个人日常生活。

美国哈佛大学教授、定量社会科学研究所主任——Gary King就曾因数据分析时断章取义,得出了错误的结果。他发起了一个大数据分析项目,即通过检测Twitter和其他社交媒体帖子中的“工作”、“失业”和“分类”等关键词,来预测美国的失业率。
通过使用情感分析的技术,该组织收集了包含这些关键字的tweet和其他社交媒体帖子,来查看这些帖子的增加或减少是否与每月失业率存在相关性。
在监测这些内容时,研究人员发现包含其中一个关键字(“工作”)的帖子数量急剧增加,但随后,他们发现这与失业率毫无关系,因为他们忽略了乔布斯(乔布斯的名字Jobs也有“工作”的意思)去世的消息。我们应从这个例子中吸取教训,不要完全依靠“神奇”的大数据来指导决策。
King表示,“jobs”的双重含义只是诸多类似事件之一,在这一领域工作的人都遇到过类似的经历。他说:“这些关键字列表在短期内可能可行,但从长远来看,往往会带来灾难性的失败。你可以通过添加额外的关键字来解决问题,但这需要大量的人力参与。”
你可以输入关键些到Bing Social页面,便会看到一些相关或者无关的东西。如果你不更改查询,随着时间的推移,你会发现含有这些关键词的话题正以某种方式逐渐偏离主题,有时候偏离比较小,有时候却很大。”
但King表示,总体而言,很多大数据分析都产生了有用的内容。Vantiv公司首席安全官兼高级副总裁Kim Jones表示,这不是一个新问题,但如果人们认为大量数据能够奇迹般地产生良好的分析结果,这个问题可能会变严重。他指出:“Jobs的例子是一个经典的案例,数据本身并不等同于智慧。”
King认为内容是关键。他是大数据分析公司Crimson Hexagon首席科学家兼联合创始人,用该公司市场营销执行副总裁Wayne St. Amand的话来说,该公司旨在为在线对话提供“内容、意义和结构”。
然而,越来越多没有内容的数据在推动决策过程。华尔街日报2月份曾报道,医疗保险公司使用大数据来为其用户创建个人资料文件。该公司追踪的信息之一是购买加大号衣服的历史记录,这可能会导致将转诊转为减肥的计划。
没有人会觉得鼓励人们更健康地生活是错误的事情,但是这方面涉及的隐私问题却令人不安。这个人购买加大号衣服可能是送给另一位家庭成员。而且这种隐私问题可能带来更严重的影响。《彭博商业周刊》在2008年曾报道过有人因购买处方药的历史记录,而被保险公司拒绝为其上医疗保险,而这个人买药的历史记录暴露这个人有轻微的心理健康问题。
Adam
Frank在博客中指出,在某些情况下,银行会因为用户在社交网站LinkedIn或者Facebook上的联系人的情况而拒绝用户的贷款。如果你的朋友赖账,你的信誉可能也会受到他们的信誉的影响。ACLU高级政策分析师Jay
Stanley指出,“信用卡公司有时会因为其他消费者的信贷历史记录而降低消费者的限额。”
Kim
Jones表示,从相关性得出结论,而不进行进一步分析,这给他本人也带来过麻烦。“在80年代后期和90年代初期,有数据显示,驾驶入门级豪华车,且年龄在20和27岁之间的西班牙裔和黑人男性最有可能是毒贩。而我正好符合这个标准,我是非裔美国人,年龄也在这个范围内,当时我开的正式这样的车,但我并不是毒贩。”
他表示,“我们不能只是依靠数据分析,那样可能会导致一些坏的结果。如果你忽略人类的分析因素,那么你的错误率将会非常高。”
简言之,大数据是一个工具,但不应该被视为解决方案。“它可以帮助你缩小范围,从数百万可能缩小到150左右,”Jones表示,“但是我们不能让计算机做一切判断,因为这最终可能会给你带来麻烦。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12