京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代群众工作面临的问题与对策
近年来,伴随“物联网”、“云计算”和“大数据”等词汇进入公众视野,一个大数据时代正大踏步向我们走来。在这一背景下,我们应如何创新社会管理方式、做好群众工作,是我们面临的重大课题。
大数据时代给群众工作带来的影响
所谓“大数据”,是指所涉及的信息量规模巨大到无法通过目前主流软件在合理时间内达到撷取、管理、处理、并整理成为帮助企业和其他组织决策更积极目的的资讯。其具有四个特点(即4V):“巨量”(Volume)、“高速”(Velocity)、“多样”(Variety)、“价值”(Value)。运用大数据,会增加工作量和工作难度,也能让群众工作更加快捷、精准。这主要表现在:一是便于管理部门“摸清家底”;二是有利于优化流程、提高效率;三是让民众享受更加高效、公正、透明的服务;四是可以提前感知和预测事件苗头及发展走势。可以说,大数据为群众工作提供了强大技术手段,它将在很大程度上改变群众工作和社会管理思路:从“模糊管理”向“数据管理”转变,由“经验治理”向“科学治理”迈进,实现“智能社会”、“智慧城市”。
大数据时代群众工作面临的主要问题
数据意识薄弱。一些管理者数据意识比较淡薄,缺乏“用数据决策、凭数据施政”理念。
数据政出多门。由于缺乏统筹规划,不少应用系统之间没有统一的技术和数据标准,数据不能自动传递,缺乏有效的关联和共享,从而形成“数据孤岛”。
数据安全欠缺。利用云计算对海量数据资源进行整合,使其从分散变得集中,增加了数据存储的安全风险。
数据人才匮乏。大数据是一个综合性课题,需要不同层级的人才,当前在党政机关比较匮乏。
做好大数据时代群众工作的几点建议
在“教育”上下功夫,培养数据意识和数据素养,为大数据时代的群众工作提供坚实思想保障。随着信息技术的飞速发展,具备良好数据意识和数据素养,将成为党政干部做好大数据时代群众工作的关键。首先,要把大数据专业知识列入各级党政干部教育培训和年度考核;其次,举办各类讲座和学术报告,普及大数据知识;第三,利用报刊、广播、电视和网络等媒体开辟专栏,宣传相关知识。
在“整合”上下功夫,实现数据互联互通和充分共享,为大数据时代的群众工作提供一流技术平台。应对大数据时代群众工作的需要,消除信息孤岛,实现数据的互联互通和充分共享,建设统一技术平台,显得格外迫切。一要坚持统一领导、统一规划、统一标准、统一建设;二要遵循以“需求为导向,应用促发展”的工作思路,推进信息共享、互联、互通平台建设与应用同步建设;三要采用国际先进的,符合我国信息化建设发展方向的、标准的、跨平台的信息技术。
在“防范”上下功夫,保护数据安全和公民隐私,为大数据时代的群众工作提供可靠网络环境。我们在实施社会管理、做好群众工作时,要特别注重对数据安全和公民个人隐私的保护。第一,将个人信息保护纳入国家战略资源的保护和规划范畴,保护公民隐私;第二,加快个人隐私保护立法,加大对侵害隐私等行为的打击力度;第三,加强对隐私保护行政监管,建立保护隐私测评机制;第四,加强对隐私权的技术保护,利用技术手段来保障公民隐私安全和合法权益。
在“创新”上下功夫,加强人才队伍建设,为大数据时代的群众工作提供优质智力支撑。没有一流的人才队伍,迎接大数据时代、做好大数据时代群众工作将成为一句空话。因此,开发和培养一支大数据人才队伍,不断提高群众工作的能力势在必行。一要设立专门的数据管理岗位,建立政府“首席信息官”制度;二要委托高校、科研院所和国际知名企业,“订单式”培养人才;三是利用“聘任制”,不断吸引体制外的专业人才进入党政机关,为大数据时代的群众工作提供智力支持和人才保障
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11