京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R检验配对股票的协整性
基于统计套利的配对交易策略是一种市场中性策略。具体地说,是指从市场上找出历史股价走势相近的股票进行配对,当配对股票价格差(Spread)偏离历史均值时,则做空股价偏高的股票,同时做多股价偏低的股票,等待它们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。
进行配对交易,第一步也是最关键的一步是寻找符合配对条件的股票,即两支历史价格走势相近,具有长期稳定关系的股票。本文解释如何用R来实现协整检验。
假设你有两支股票,如TKR_Y和TKR_X,各自5分钟行情的历史数据,你想要知道它们是否存在协整关系;再假设这些数据是从PostgreSQL数据库(pairs_trading_test)中提取,数据表(tbl_quote)的结构为:
id #id
market #市场,如SH,SZ
symbol #代码,如600036
qdatetime #时间戳,YYYY-MM-DD HH:MM:SS
open #开盘价
high #最高价
low #最低价
close #收盘价
adj_close #调整后收盘价,指除权息后经调整的收盘价
数据表示
在R中,当然可以用向量(vector)或数据框(data frame)来表示你的时间序列数据,但其过程肯定乏味低效。强烈建议使用zoo包或xts包来进行时间序列分析,xts是zoo包的一个超集,包含极高的运算效率和其它一些方便实用的特点。此处,我们用zoo对象来表达时间序列数据。
一旦把数据加载到zoo对象,比如t,那么它的行为与数据框类似。一个zoo对象可以包含若干列,每一列是一个时间序列,每一行则是这些时间序列在同一时刻的观测值。对象也提供了另外一些附加属性,如:index(t)是一个日期向量,每次观察一个日期;第一个和最后一个日期可以分别用start(t)和end(t)获得。
加载数据
从数据库中读取并加载数据只需完成以下简单步骤:
library(zoo)
library(RpgSQL)
r_conn<-dbConnect(pgSQL(), user="postgres", password="postgres",
dbname="pairs_trading_test", host="localhost")
q<-paste("select qdatetime, log(close) from tbl_quote where market like '", X_market, "' and symbol like '", X_symbol, "'", sep="")
quote_x <- dbGetQuery(r_conn, q)
q<-paste("select qdatetime, log(close) from tbl_quote where market like '", Y_market, "' and symbol like '", Y_symbol, "'", sep="")
quote_y <- dbGetQuery(r_conn, q)
#用zoo函数来构造zoo对象,该函数有两个参数,一个数据向量,一个日期向量
quote_x <- zoo(quote_x$close, quote_x$qdatetime)
quote_y <- zoo(quote_y$close, quote_y$qdatetime)
# merge函数合并两个zoo对象,同时计算它们的交集(all=FALSE)或并集(all=TRUE)
t.zoo <- merge(quote_x, quote_y, all=FALSE)
#此时,t.zoo是一个包含两列:quote_x和quote_y的zoo对象。由于R中许多统计函数需要数据框作为输入项。在此,我们创建一个数据框对象
t <- as.data.frame(t.zoo)
#打印输出日期范围
cat("日期范围是:", format(start(t.zoo)), "至", format(end(t.zoo)), "\n")
#----------------------------------------------------------------------------------------------------------------
# X_market, X_symbol, Y_market, Y_symbol分别为股票TKR_X、TKR_Y的市场和代码
# log(close)表示取收盘价自然对数。取价格的对数序列是协整检验的常用做法,目的是消除数据中可能存在的异方差。
#----------------------------------------------------------------------------------------------------------------
构造价差序列
在Matlab、Eviews等软件中,一般是先检验协整关系,然后再构造价差序列。在R中,我们可以以另外一种方式完成同样的任务:先构造价差序列,然后对该序列进行单位根检验。如果价差序列有一个根位于单位圆内,则相应的股票就是协整的。
价差序列定义如下:
S = y - (β × x)
此处,β是对冲系数,用最小二乘法计算而得。移项,我们要知道的不过就是最适合以下方程的β:
y =(-β)× x
这是一个简单且没有y截距的线性方程。在R中,lm函数可以用来拟合这样的线性模型。
# lm函数用OLS构造线性回归模型。我们先构造一个截距为零的线性模型,然后提取模型的第2个回归系数。
m <- lm(quote_y ~ quote_x + 0, data = t)
beta <- coef(m)[1]
#现在,计算价差序列
sprd <- t$quote_y - beta * t$quote_x
传递给lm的第一个参数是一个指定线性模型的公式,公式quote_y ~ quote_x + 0表示模型如下:
quote_yi= β × quote_xi+ εi
(如果公式中省略掉"+ 0", 则R也会拟合一个y截距)
检验协整关系
ADF是单位根检验的一种基本方法,许多R包都提供该方法。这里,我们用tseries包中的adf.test函数。该函数返回一个包含测试结果,尤其是我们所需的P值,的对象。
library(tseries)
ht <- adf.test(sprd, alternative="stationary", k=0)
设置alternative="stationary"非常重要:
对统计学者而言,它指定了一个价差序列非平稳或发散的零假设
对其他人而言,它意味着如果P值很小,则价差是均值回复的。至于何为“小”,取决与你有多严格,一般是小于0.1或0.05(越小越好)
至此,协整检验就Ok了。我们可以将ADF检验结果解释如下:
#ht对象中包含ADF检验中得到的P值。p值是价差序列非均值回复的概率,因此,越小的P值意味序列非均值回复的概率越小。
if (ht$p.value < 0.05) {
cat("价差可能均值回复.\n")
} else {
cat("价差不满足均值回复.\n")
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27