
policy机制中经典的python用法
由于接触python时间还不长,属于边用边学,在看项目代码的时候,遇到了很多不太懂的python语法,但是我认为这些用法用的实在是好,希望以后自己在写程序时,也能写出这么经典的代码,在这里记录下来这些:
1. 将函数名作为参数传递给另一个模块中的函数使用:
[python] view plaincopy
def init():
......
#read_cached_file做的事是读取_POLICY_PATH文件中的数据,和这个文件修改的时间,保存到_POLICY_CACHE字典中,
#然后使用_set_rules(data)来解析这些数据,最后返回这些数据。
utils.read_cached_file(_POLICY_PATH, _POLICY_CACHE,
reload_func=_set_rules)
def _set_rules(data):
default_rule = CONF.policy_default_rule
policy.set_rules(policy.Rules.load_json(data, default_rule))
2. 类方法的使用
[python] view plaincopy
class Rules(dict):
@classmethod
def load_json(cls, data, default_rule=None):
rules = dict((k, parse_rule(v)) for k, v in
jsonutils.loads(data).items())
return cls(rules, default_rule)
以前一直弄不清楚类方法和静态方法的区别,都是通过类名去调用,但是现在清楚了,类方法有一个很好的特性,就是它可以在创建类对象之前,做一些初始化的工作,这样创建的对象,比直接调用Rules(),更灵活。
这里还想说一下继承自dict这个特性,通过覆盖父类中的方法,__missing__(),__str__()等定制了一个自己的字典类型,用起来很舒服啊。
3. 解释器的使用
[python] view plaincopy
_checks = {}
def register(name, func=None):
def decorator(func):
_checks[name] = func
return func
if func:
return decorator(func)
return decorator
@register("rule")
class RuleCheck(Check):
pass
@register("role")
class RoleCheck(Check):
pass
文档在加载的时候,每遇到一个@register()修饰符,就会将被修饰的类添加到_check变量中,简洁方便。
4. yield的使用
yield在我看来,是一种能够间断的循环,一直都不太会用它,policy中在解析复合rule时,就用到了yield:
[python] view plaincopy
state = ParseState()
for tok, value in _parse_tokenize(rule):
state.shift(tok, value)
# 这个函数主要是将规则的字符串进行了一下预处理,然后调用_parse_check()最终将字符串转换成BaseCheck对象
def _parse_tokenize(rule):
#这段代码的意思是将一个字符串以空格为间隔,重组为一个字符串的列表,如:
# a.split('(is_admin:True or project_id:%(project_id)s)')
# ['(is_admin:True', 'or', 'project_id:%(project_id)s)']
for tok in _tokenize_re.split(rule):
# Skip empty tokens
if not tok or tok.isspace():
continue
# Handle leading parens on the token
clean = tok.lstrip('(')
for i in range(len(tok) - len(clean)):
yield '(', '('
# If it was only parentheses, continue
if not clean:
continue
else:
tok = clean
# Handle trailing parens on the token
clean = tok.rstrip(')')
trail = len(tok) - len(clean)
# Yield the cleaned token
lowered = clean.lower()
if lowered in ('and', 'or', 'not'):
# Special tokens
yield lowered, clean
elif clean:
# Not a special token, but not composed solely of ')'
if len(tok) >= 2 and ((tok[0], tok[-1]) in
[('"''"', '"'), ("'""'", "'")]):
# It's a quoted string
yield 'string', tok[1:-1]
else:
yield 'check', _parse_check(clean)
# Yield the trailing parens
for i in range(trail):
yield ')', ')'
程序中每遇到一个yield,就会中断当前的执行,返回值,然后由外部的for循环进行处理,处理完之后,再回到刚才中断的地方继续执行。
5. 元类的使用
元类以前从来没有接触过,policy里也用到了,还是在解析复合rule的时候,用的这个元类:ParseStateMeta,通过使用元类,可以自定义某些类是如何创建的,从根本上说赋予你如何创建类的控制权:
[python] view plaincopy
class ParseStateMeta(type):
# name是子类的类名,bases是子类的数据,cls_dict是子类中的属性
def __new__(cls, name, bases, cls_dict):
reducers = []
# key为属性名,value为属性的对象,如:
# shift : <function shift at 0xa27b4fc>
# _make_not_expr : <function _make_not_expr at 0xa27b6bc>
for key, value in cls_dict.items():
if not hasattr(value, 'reducers'):# 如果没有包含reducers属性,即那些没有@reducer修饰的方法
continue
for reduction in value.reducers:# 遍历某个函数中的reducers列表,把它添加到元类中的reducers列表中
reducers.append((reduction, key))
cls_dict['reducers'] = reducers
return super(ParseStateMeta, cls).__new__(cls, name, bases, cls_dict)
# 虽然只是简单的定义了一个ParseState对象,但是却做了很多的事:
# 1.@reducer修饰器给被装饰的的方法添加了reducers列表,并且将修饰器的参数建成一个列表添加到该列表中;
# -->形式如:[['','',''],['','','']],
# 再如:[['(', 'or_expr', ')'], ['(', 'and_expr', ')'], ['(', 'check', ')']]
# 2.ParseStateMeta元类创建了一个reducers变量(针对于ParseState是全局的),也是一个列表,
# 然后遍历了ParseState的所有属性,找到有reducers属性的属性(即带有@reducer的方法),
# 然后再遍历该方法的reducers列表,将列表的每一项和该方法的名字组合成一个元组,存放在reducers变量中;
# -->形式如:[(['','',''],funcname),(['','',''],funcname),(['','',''],funcname)]
# 再如:[(['check', 'or', 'check'], '_make_or_expr'), (['or_expr', 'or', 'check'], '_extend_or_expr')]
class ParseState(object):
__metaclass__ = ParseStateMeta
......
6. 递归的使用
[python] view plaincopy
def reduce(self):
#a[-3:]表示a这个列表的最后三个数
for reduction, methname in self.reducers:
# 如果当前的tokens的长度大于reduction的长度,并且tokens的最后几个和reduction相同
# 即模式匹配,则调用相应的方法来进行复合判断
# 什么情况不执行这段呢?
# 1. 没有复合的规则
# 2. 复合的规则和reduction不匹配
# 这两种情况下,就不执行复合,直接返回的还是原来的对象:RuleCheck, RoleCheck, HttpCheck, GenericCheck
# 如果复合的话,返回的是复合对象:OrCheck, AndCheck, NotCheck
if (len(self.tokens) >= len(reduction) and
self.tokens[-len(reduction):] == reduction):
# Get the reduction method
meth = getattr(self, methname)
# Reduce the token stream
# 有两个GenericCheck对象和一个‘or’,传递给_make_or_expr()方法,用这两个
# 对象构造了一个OrCheck对象,该对象的返回值,是按照这两个GenericCheck对象在的
# target和creds上能否执行的真假来进行或操作得到的
results = meth(*self.values[-len(reduction):])
# Update the tokens and values
self.tokens[-len(reduction):] = [r[0] for r in results]
self.values[-len(reduction):] = [r[1] for r in results]
# Check for any more reductions
return self.reduce()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28