京公网安备 11010802034615号
经营许可证编号:京B2-20210330
policy机制中经典的python用法
由于接触python时间还不长,属于边用边学,在看项目代码的时候,遇到了很多不太懂的python语法,但是我认为这些用法用的实在是好,希望以后自己在写程序时,也能写出这么经典的代码,在这里记录下来这些:
1. 将函数名作为参数传递给另一个模块中的函数使用:
[python] view plaincopy
def init():
......
#read_cached_file做的事是读取_POLICY_PATH文件中的数据,和这个文件修改的时间,保存到_POLICY_CACHE字典中,
#然后使用_set_rules(data)来解析这些数据,最后返回这些数据。
utils.read_cached_file(_POLICY_PATH, _POLICY_CACHE,
reload_func=_set_rules)
def _set_rules(data):
default_rule = CONF.policy_default_rule
policy.set_rules(policy.Rules.load_json(data, default_rule))
2. 类方法的使用
[python] view plaincopy
class Rules(dict):
@classmethod
def load_json(cls, data, default_rule=None):
rules = dict((k, parse_rule(v)) for k, v in
jsonutils.loads(data).items())
return cls(rules, default_rule)
以前一直弄不清楚类方法和静态方法的区别,都是通过类名去调用,但是现在清楚了,类方法有一个很好的特性,就是它可以在创建类对象之前,做一些初始化的工作,这样创建的对象,比直接调用Rules(),更灵活。
这里还想说一下继承自dict这个特性,通过覆盖父类中的方法,__missing__(),__str__()等定制了一个自己的字典类型,用起来很舒服啊。
3. 解释器的使用
[python] view plaincopy
_checks = {}
def register(name, func=None):
def decorator(func):
_checks[name] = func
return func
if func:
return decorator(func)
return decorator
@register("rule")
class RuleCheck(Check):
pass
@register("role")
class RoleCheck(Check):
pass
文档在加载的时候,每遇到一个@register()修饰符,就会将被修饰的类添加到_check变量中,简洁方便。
4. yield的使用
yield在我看来,是一种能够间断的循环,一直都不太会用它,policy中在解析复合rule时,就用到了yield:
[python] view plaincopy
state = ParseState()
for tok, value in _parse_tokenize(rule):
state.shift(tok, value)
# 这个函数主要是将规则的字符串进行了一下预处理,然后调用_parse_check()最终将字符串转换成BaseCheck对象
def _parse_tokenize(rule):
#这段代码的意思是将一个字符串以空格为间隔,重组为一个字符串的列表,如:
# a.split('(is_admin:True or project_id:%(project_id)s)')
# ['(is_admin:True', 'or', 'project_id:%(project_id)s)']
for tok in _tokenize_re.split(rule):
# Skip empty tokens
if not tok or tok.isspace():
continue
# Handle leading parens on the token
clean = tok.lstrip('(')
for i in range(len(tok) - len(clean)):
yield '(', '('
# If it was only parentheses, continue
if not clean:
continue
else:
tok = clean
# Handle trailing parens on the token
clean = tok.rstrip(')')
trail = len(tok) - len(clean)
# Yield the cleaned token
lowered = clean.lower()
if lowered in ('and', 'or', 'not'):
# Special tokens
yield lowered, clean
elif clean:
# Not a special token, but not composed solely of ')'
if len(tok) >= 2 and ((tok[0], tok[-1]) in
[('"''"', '"'), ("'""'", "'")]):
# It's a quoted string
yield 'string', tok[1:-1]
else:
yield 'check', _parse_check(clean)
# Yield the trailing parens
for i in range(trail):
yield ')', ')'
程序中每遇到一个yield,就会中断当前的执行,返回值,然后由外部的for循环进行处理,处理完之后,再回到刚才中断的地方继续执行。
5. 元类的使用
元类以前从来没有接触过,policy里也用到了,还是在解析复合rule的时候,用的这个元类:ParseStateMeta,通过使用元类,可以自定义某些类是如何创建的,从根本上说赋予你如何创建类的控制权:
[python] view plaincopy
class ParseStateMeta(type):
# name是子类的类名,bases是子类的数据,cls_dict是子类中的属性
def __new__(cls, name, bases, cls_dict):
reducers = []
# key为属性名,value为属性的对象,如:
# shift : <function shift at 0xa27b4fc>
# _make_not_expr : <function _make_not_expr at 0xa27b6bc>
for key, value in cls_dict.items():
if not hasattr(value, 'reducers'):# 如果没有包含reducers属性,即那些没有@reducer修饰的方法
continue
for reduction in value.reducers:# 遍历某个函数中的reducers列表,把它添加到元类中的reducers列表中
reducers.append((reduction, key))
cls_dict['reducers'] = reducers
return super(ParseStateMeta, cls).__new__(cls, name, bases, cls_dict)
# 虽然只是简单的定义了一个ParseState对象,但是却做了很多的事:
# 1.@reducer修饰器给被装饰的的方法添加了reducers列表,并且将修饰器的参数建成一个列表添加到该列表中;
# -->形式如:[['','',''],['','','']],
# 再如:[['(', 'or_expr', ')'], ['(', 'and_expr', ')'], ['(', 'check', ')']]
# 2.ParseStateMeta元类创建了一个reducers变量(针对于ParseState是全局的),也是一个列表,
# 然后遍历了ParseState的所有属性,找到有reducers属性的属性(即带有@reducer的方法),
# 然后再遍历该方法的reducers列表,将列表的每一项和该方法的名字组合成一个元组,存放在reducers变量中;
# -->形式如:[(['','',''],funcname),(['','',''],funcname),(['','',''],funcname)]
# 再如:[(['check', 'or', 'check'], '_make_or_expr'), (['or_expr', 'or', 'check'], '_extend_or_expr')]
class ParseState(object):
__metaclass__ = ParseStateMeta
......
6. 递归的使用
[python] view plaincopy
def reduce(self):
#a[-3:]表示a这个列表的最后三个数
for reduction, methname in self.reducers:
# 如果当前的tokens的长度大于reduction的长度,并且tokens的最后几个和reduction相同
# 即模式匹配,则调用相应的方法来进行复合判断
# 什么情况不执行这段呢?
# 1. 没有复合的规则
# 2. 复合的规则和reduction不匹配
# 这两种情况下,就不执行复合,直接返回的还是原来的对象:RuleCheck, RoleCheck, HttpCheck, GenericCheck
# 如果复合的话,返回的是复合对象:OrCheck, AndCheck, NotCheck
if (len(self.tokens) >= len(reduction) and
self.tokens[-len(reduction):] == reduction):
# Get the reduction method
meth = getattr(self, methname)
# Reduce the token stream
# 有两个GenericCheck对象和一个‘or’,传递给_make_or_expr()方法,用这两个
# 对象构造了一个OrCheck对象,该对象的返回值,是按照这两个GenericCheck对象在的
# target和creds上能否执行的真假来进行或操作得到的
results = meth(*self.values[-len(reduction):])
# Update the tokens and values
self.tokens[-len(reduction):] = [r[0] for r in results]
self.values[-len(reduction):] = [r[1] for r in results]
# Check for any more reductions
return self.reduce()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13