京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Basis(基础):
MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率),JP(Joint Probability 联合概率),MP(Marginal Probability边缘概率),Bayesian Formula(贝叶斯公式),L1 /L2Regularization(L1/L2正则,以及更多的,现在比较火的L2.5正则等),GD(GradientDescent 梯度下降),SGD(Stochastic Gradient Descent 随机梯度下降),Eigenvalue(特征值),Eigenvector(特征向量),QR-decomposition(QR分解),Quantile (分位数),Covariance(协方差矩阵)。
Common Distribution(常见分布):
Discrete
Distribution(离散型分布):BernoulliDistribution/Binomial(贝努利分布/二项分布),Negative
BinomialDistribution(负二项分布),MultinomialDistribution(多项式分布),Geometric
Distribution(几何分布),HypergeometricDistribution(超几何分布),Poisson
Distribution (泊松分布)
Continuous Distribution (连续型分布):UniformDistribution(均匀分布),Normal
Distribution /Guassian
Distribution(正态分布/高斯分布),ExponentialDistribution(指数分布),Lognormal
Distribution(对数正态分布),GammaDistribution(Gamma分布),Beta
Distribution(Beta分布),Dirichlet Distribution(狄利克雷分布),Rayleigh
Distribution(瑞利分布),Cauchy Distribution(柯西分布),Weibull Distribution (韦伯分布)
Three Sampling Distribution(三大抽样分布):Chi-squareDistribution(卡方分布),t-distribution(t-distribution),F-distribution(F-分布)
Data Pre-processing(数据预处理):
Missing Value Imputation(缺失值填充),Discretization(离散化),Mapping(映射),Normalization(归一化/标准化)。
Sampling(采样):
Simple Random Sampling(简单随机采样),OfflineSampling(离线等可能K采样),Online
Sampling(在线等可能K采样),Ratio-based
Sampling(等比例随机采样),Acceptance-RejectionSampling(接受-拒绝采样),Importance
Sampling(重要性采样),MCMC(MarkovChain Monte Carlo
马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。
Clustering(聚类):
K-Means,K-Mediods,二分K-Means,FK-Means,Canopy,Spectral-KMeans(谱聚类),GMM-EM(混合高斯模型-期望最大化算法解决),K-Pototypes,CLARANS(基于划分),BIRCH(基于层次),CURE(基于层次),DBSCAN(基于密度),CLIQUE(基于密度和基于网格)
Classification&Regression(分类&回归):
LR(Linear Regression 线性回归),LR(LogisticRegression逻辑回归),SR(Softmax
Regression 多分类逻辑回归),GLM(GeneralizedLinear Model 广义线性模型),RR(Ridge
Regression 岭回归/L2正则最小二乘回归),LASSO(Least Absolute Shrinkage
andSelectionator Operator L1正则最小二乘回归),
RF(随机森林),DT(DecisionTree决策树),GBDT(Gradient BoostingDecision Tree
梯度下降决策树),CART(ClassificationAnd Regression Tree 分类回归树),KNN(K-Nearest
Neighbor K近邻),SVM(Support VectorMachine),KF(KernelFunction
核函数PolynomialKernel Function 多项式核函数、Guassian KernelFunction 高斯核函数/Radial
BasisFunction RBF径向基函数、String KernelFunction 字符串核函数)、 NB(Naive Bayes
朴素贝叶斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network
贝叶斯网络/贝叶斯信度网络/信念网络),LDA(Linear Discriminant Analysis/FisherLinear
Discriminant 线性判别分析/Fisher线性判别),EL(Ensemble
Learning集成学习Boosting,Bagging,Stacking),AdaBoost(Adaptive Boosting
自适应增强),MEM(MaximumEntropy Model最大熵模型)
Effectiveness Evaluation(分类效果评估):
Confusion
Matrix(混淆矩阵),Precision(精确度),Recall(召回率),Accuracy(准确率),F-score(F得分),ROC
Curve(ROC曲线),AUC(AUC面积),LiftCurve(Lift曲线) ,KS Curve(KS曲线)。
PGM(Probabilistic Graphical Models概率图模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork
贝叶斯网络/贝叶斯信度网络/信念网络),MC(Markov Chain 马尔科夫链),HMM(HiddenMarkov Model
马尔科夫模型),MEMM(Maximum Entropy Markov Model
最大熵马尔科夫模型),CRF(ConditionalRandom Field 条件随机场),MRF(MarkovRandom Field
马尔科夫随机场)。
NN(Neural Network神经网络):
ANN(Artificial Neural Network 人工神经网络),BP(Error BackPropagation 误差反向传播)
Deep Learning(深度学习):
Auto-encoder(自动编码器),SAE(Stacked Auto-encoders堆叠自动编码器:Sparse
Auto-encoders稀疏自动编码器、Denoising Auto-encoders去噪自动编码器、Contractive
Auto-encoders 收缩自动编码器),RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机),DBN(Deep
Belief Network 深度信念网络),CNN(ConvolutionalNeural Network
卷积神经网络),Word2Vec(词向量学习模型)。
DimensionalityReduction(降维):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant
线性判别分析/Fisher线性判别,PCA(Principal Component Analysis
主成分分析),ICA(IndependentComponent Analysis 独立成分分析),SVD(Singular Value
Decomposition 奇异值分解),FA(FactorAnalysis 因子分析法)。
Text Mining(文本挖掘):
VSM(Vector Space Model向量空间模型),Word2Vec(词向量学习模型),TF(Term
Frequency词频),TF-IDF(Term Frequency-Inverse DocumentFrequency
词频-逆向文档频率),MI(MutualInformation 互信息),ECE(Expected Cross Entropy
期望交叉熵),QEMI(二次信息熵),IG(InformationGain 信息增益),IGR(Information Gain Ratio
信息增益率),Gini(基尼系数),x2 Statistic(x2统计量),TEW(TextEvidence
Weight文本证据权),OR(Odds Ratio 优势率),N-Gram Model,LSA(Latent Semantic
Analysis 潜在语义分析),PLSA(ProbabilisticLatent Semantic Analysis
基于概率的潜在语义分析),LDA(Latent DirichletAllocation 潜在狄利克雷模型)
Association Mining(关联挖掘):
Apriori,FP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法),AprioriAll,Spade。
Recommendation Engine(推荐引擎):
DBR(Demographic-based Recommendation
基于人口统计学的推荐),CBR(Context-basedRecommendation 基于内容的推荐),CF(Collaborative
Filtering协同过滤),UCF(User-basedCollaborative Filtering Recommendation
基于用户的协同过滤推荐),ICF(Item-basedCollaborative Filtering Recommendation
基于项目的协同过滤推荐)。
Similarity Measure&Distance Measure(相似性与距离度量):
Euclidean Distance(欧式距离),ManhattanDistance(曼哈顿距离),Chebyshev
Distance(切比雪夫距离),MinkowskiDistance(闵可夫斯基距离),Standardized Euclidean
Distance(标准化欧氏距离),MahalanobisDistance(马氏距离),Cos(Cosine
余弦),HammingDistance/Edit
Distance(汉明距离/编辑距离),JaccardDistance(杰卡德距离),Correlation Coefficient
Distance(相关系数距离),InformationEntropy(信息熵),KL(Kullback-Leibler Divergence
KL散度/Relative Entropy 相对熵)。
Optimization(最优化):
Non-constrainedOptimization(无约束优化):Cyclic VariableMethods(变量轮换法),Pattern
Search Methods(模式搜索法),VariableSimplex Methods(可变单纯形法),Gradient Descent
Methods(梯度下降法),Newton Methods(牛顿法),Quasi-NewtonMethods(拟牛顿法),Conjugate
Gradient Methods(共轭梯度法)。
ConstrainedOptimization(有约束优化):Approximation Programming
Methods(近似规划法),FeasibleDirection Methods(可行方向法),Penalty Function
Methods(罚函数法),Multiplier Methods(乘子法)。
Heuristic Algorithm(启发式算法),SA(SimulatedAnnealing,模拟退火算法),GA(genetic algorithm遗传算法)
Feature Selection(特征选择算法):
Mutual Information(互信息),DocumentFrequence(文档频率),Information Gain(信息增益),Chi-squared Test(卡方检验),Gini(基尼系数)。
Outlier Detection(异常点检测算法):
Statistic-based(基于统计),Distance-based(基于距离),Density-based(基于密度),Clustering-based(基于聚类)。
Learning to Rank(基于学习的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART;
Tool(工具):
MPI,Hadoop生态圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12