京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Basis(基础):
MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率),JP(Joint Probability 联合概率),MP(Marginal Probability边缘概率),Bayesian Formula(贝叶斯公式),L1 /L2Regularization(L1/L2正则,以及更多的,现在比较火的L2.5正则等),GD(GradientDescent 梯度下降),SGD(Stochastic Gradient Descent 随机梯度下降),Eigenvalue(特征值),Eigenvector(特征向量),QR-decomposition(QR分解),Quantile (分位数),Covariance(协方差矩阵)。
Common Distribution(常见分布):
Discrete
Distribution(离散型分布):BernoulliDistribution/Binomial(贝努利分布/二项分布),Negative
BinomialDistribution(负二项分布),MultinomialDistribution(多项式分布),Geometric
Distribution(几何分布),HypergeometricDistribution(超几何分布),Poisson
Distribution (泊松分布)
Continuous Distribution (连续型分布):UniformDistribution(均匀分布),Normal
Distribution /Guassian
Distribution(正态分布/高斯分布),ExponentialDistribution(指数分布),Lognormal
Distribution(对数正态分布),GammaDistribution(Gamma分布),Beta
Distribution(Beta分布),Dirichlet Distribution(狄利克雷分布),Rayleigh
Distribution(瑞利分布),Cauchy Distribution(柯西分布),Weibull Distribution (韦伯分布)
Three Sampling Distribution(三大抽样分布):Chi-squareDistribution(卡方分布),t-distribution(t-distribution),F-distribution(F-分布)
Data Pre-processing(数据预处理):
Missing Value Imputation(缺失值填充),Discretization(离散化),Mapping(映射),Normalization(归一化/标准化)。
Sampling(采样):
Simple Random Sampling(简单随机采样),OfflineSampling(离线等可能K采样),Online
Sampling(在线等可能K采样),Ratio-based
Sampling(等比例随机采样),Acceptance-RejectionSampling(接受-拒绝采样),Importance
Sampling(重要性采样),MCMC(MarkovChain Monte Carlo
马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。
Clustering(聚类):
K-Means,K-Mediods,二分K-Means,FK-Means,Canopy,Spectral-KMeans(谱聚类),GMM-EM(混合高斯模型-期望最大化算法解决),K-Pototypes,CLARANS(基于划分),BIRCH(基于层次),CURE(基于层次),DBSCAN(基于密度),CLIQUE(基于密度和基于网格)
Classification&Regression(分类&回归):
LR(Linear Regression 线性回归),LR(LogisticRegression逻辑回归),SR(Softmax
Regression 多分类逻辑回归),GLM(GeneralizedLinear Model 广义线性模型),RR(Ridge
Regression 岭回归/L2正则最小二乘回归),LASSO(Least Absolute Shrinkage
andSelectionator Operator L1正则最小二乘回归),
RF(随机森林),DT(DecisionTree决策树),GBDT(Gradient BoostingDecision Tree
梯度下降决策树),CART(ClassificationAnd Regression Tree 分类回归树),KNN(K-Nearest
Neighbor K近邻),SVM(Support VectorMachine),KF(KernelFunction
核函数PolynomialKernel Function 多项式核函数、Guassian KernelFunction 高斯核函数/Radial
BasisFunction RBF径向基函数、String KernelFunction 字符串核函数)、 NB(Naive Bayes
朴素贝叶斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network
贝叶斯网络/贝叶斯信度网络/信念网络),LDA(Linear Discriminant Analysis/FisherLinear
Discriminant 线性判别分析/Fisher线性判别),EL(Ensemble
Learning集成学习Boosting,Bagging,Stacking),AdaBoost(Adaptive Boosting
自适应增强),MEM(MaximumEntropy Model最大熵模型)
Effectiveness Evaluation(分类效果评估):
Confusion
Matrix(混淆矩阵),Precision(精确度),Recall(召回率),Accuracy(准确率),F-score(F得分),ROC
Curve(ROC曲线),AUC(AUC面积),LiftCurve(Lift曲线) ,KS Curve(KS曲线)。
PGM(Probabilistic Graphical Models概率图模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork
贝叶斯网络/贝叶斯信度网络/信念网络),MC(Markov Chain 马尔科夫链),HMM(HiddenMarkov Model
马尔科夫模型),MEMM(Maximum Entropy Markov Model
最大熵马尔科夫模型),CRF(ConditionalRandom Field 条件随机场),MRF(MarkovRandom Field
马尔科夫随机场)。
NN(Neural Network神经网络):
ANN(Artificial Neural Network 人工神经网络),BP(Error BackPropagation 误差反向传播)
Deep Learning(深度学习):
Auto-encoder(自动编码器),SAE(Stacked Auto-encoders堆叠自动编码器:Sparse
Auto-encoders稀疏自动编码器、Denoising Auto-encoders去噪自动编码器、Contractive
Auto-encoders 收缩自动编码器),RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机),DBN(Deep
Belief Network 深度信念网络),CNN(ConvolutionalNeural Network
卷积神经网络),Word2Vec(词向量学习模型)。
DimensionalityReduction(降维):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant
线性判别分析/Fisher线性判别,PCA(Principal Component Analysis
主成分分析),ICA(IndependentComponent Analysis 独立成分分析),SVD(Singular Value
Decomposition 奇异值分解),FA(FactorAnalysis 因子分析法)。
Text Mining(文本挖掘):
VSM(Vector Space Model向量空间模型),Word2Vec(词向量学习模型),TF(Term
Frequency词频),TF-IDF(Term Frequency-Inverse DocumentFrequency
词频-逆向文档频率),MI(MutualInformation 互信息),ECE(Expected Cross Entropy
期望交叉熵),QEMI(二次信息熵),IG(InformationGain 信息增益),IGR(Information Gain Ratio
信息增益率),Gini(基尼系数),x2 Statistic(x2统计量),TEW(TextEvidence
Weight文本证据权),OR(Odds Ratio 优势率),N-Gram Model,LSA(Latent Semantic
Analysis 潜在语义分析),PLSA(ProbabilisticLatent Semantic Analysis
基于概率的潜在语义分析),LDA(Latent DirichletAllocation 潜在狄利克雷模型)
Association Mining(关联挖掘):
Apriori,FP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法),AprioriAll,Spade。
Recommendation Engine(推荐引擎):
DBR(Demographic-based Recommendation
基于人口统计学的推荐),CBR(Context-basedRecommendation 基于内容的推荐),CF(Collaborative
Filtering协同过滤),UCF(User-basedCollaborative Filtering Recommendation
基于用户的协同过滤推荐),ICF(Item-basedCollaborative Filtering Recommendation
基于项目的协同过滤推荐)。
Similarity Measure&Distance Measure(相似性与距离度量):
Euclidean Distance(欧式距离),ManhattanDistance(曼哈顿距离),Chebyshev
Distance(切比雪夫距离),MinkowskiDistance(闵可夫斯基距离),Standardized Euclidean
Distance(标准化欧氏距离),MahalanobisDistance(马氏距离),Cos(Cosine
余弦),HammingDistance/Edit
Distance(汉明距离/编辑距离),JaccardDistance(杰卡德距离),Correlation Coefficient
Distance(相关系数距离),InformationEntropy(信息熵),KL(Kullback-Leibler Divergence
KL散度/Relative Entropy 相对熵)。
Optimization(最优化):
Non-constrainedOptimization(无约束优化):Cyclic VariableMethods(变量轮换法),Pattern
Search Methods(模式搜索法),VariableSimplex Methods(可变单纯形法),Gradient Descent
Methods(梯度下降法),Newton Methods(牛顿法),Quasi-NewtonMethods(拟牛顿法),Conjugate
Gradient Methods(共轭梯度法)。
ConstrainedOptimization(有约束优化):Approximation Programming
Methods(近似规划法),FeasibleDirection Methods(可行方向法),Penalty Function
Methods(罚函数法),Multiplier Methods(乘子法)。
Heuristic Algorithm(启发式算法),SA(SimulatedAnnealing,模拟退火算法),GA(genetic algorithm遗传算法)
Feature Selection(特征选择算法):
Mutual Information(互信息),DocumentFrequence(文档频率),Information Gain(信息增益),Chi-squared Test(卡方检验),Gini(基尼系数)。
Outlier Detection(异常点检测算法):
Statistic-based(基于统计),Distance-based(基于距离),Density-based(基于密度),Clustering-based(基于聚类)。
Learning to Rank(基于学习的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART;
Tool(工具):
MPI,Hadoop生态圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27