京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Google机器学习零基础在线课程发布,免费!附中文版
新的学习资源来了!刚刚,谷歌上线了人工智能学习网站 Learn with Google AI,并推出了机器学习在线课程,免费!而且还有中文版!
传送门:
“机器学习速成课程”中文版:
https://developers.google.com/machine-learning/crash-course/
Learn with Google AI:
https://ai.google/education
这个课程名为“机器学习速成课程” (简称MLCC) ,定位为机器学习热爱者的自学指南。
本来这是谷歌的内部课程,最初旨在帮助谷歌员工建立对人工智能和机器学习基本原理的快速认知,目前已有18,000名员工参加。
现在,谷歌终于允许这个课程“飞进寻常百姓家”。
课程总体时长大约15个小时,包含25节互动式课程、Google研究人员的讲座、40多项练习、实际案例研究等,还可以以互动方式直观呈现算法的实际运用。
为了展现课程全貌,我们将目录展示如下:
目录
简介
目标
前提条件和准备工作
机器学习概念
机器学习简介(3分钟)
框架处理(15 分钟)
深入了解机器学习(20 分钟)
降低损失(60 分钟)
使用 TF 的基本步骤(60 分钟)
泛化(15 分钟)
训练集和测试集(25 分钟)
验证(40 分钟)
表示法(65 分钟)
特征组合(70 分钟)
正则化:简单性(40 分钟)
逻辑回归(20 分钟)
分类(90 分钟)
正则化:稀疏性(45 分钟)
神经网络简介(55 分钟)
训练神经网络(40 分钟)
多类别神经网络(50 分钟)
嵌入(80 分钟)
机器学习工程
生产环境机器学习系统(3分钟)
静态训练与动态训练(7 分钟)
静态推理与动态推理(7 分钟)
数据依赖关系(14 分钟)
机器学习现实世界应用示例
癌症预测(5 分钟)
18 世纪文学(5 分钟)
现实世界应用准则(2 分钟)
总结
后续步骤
课程可以教会你什么?
官网显示,该课程将解答如下问题:
学习前的准备工作
看到这里,你是不是跃跃欲试、摩拳擦掌呢?别急,虽然谷歌表示,这门速成课程是为机器学习零基础的新手设计的,但是为了能够理解课程中介绍的概念并完成练习,需要参与者掌握入门级的代数知识;熟练掌握编程基础并具有一些使用Python进行编码的经验。
在准备工作中,课程还要求学习者对 Pandas 有所了解,因为机器学习速成课程中的编程练习使用 Pandas 库来操控数据集。
同时需要你了解低阶的 TensorFlow 基础知识,因为速成课程中的编程练习使用 TensorFlow 的高阶 tf.estimator API 来配置模型。
对于需要用到的主要概念和工具,谷歌也做了系统的罗列,很多概念都有超链接来进行解释,但可惜的是很多超链过去的网站都是英文,看来英文还是不能还给老师啊。
课程学习
准备工作完成后,就可以参照目录进行按部就班的学习了。
课程提供包括英语、西班牙语、法语、韩语和简体中文在内的多种版本,可以从网页左下角的下拉列表中选择语言。
值得一提的是,视频讲座的配音是使用机器学习技术生成的。营长在试听后发现,虽然机器的味道还很重,但并不影响理解,视频上方还有“发送反馈”的设置,点击后可以提交错误报告和建议,协助谷歌改进配音技术。
学习效果的检验
除了教学视频和文章,在每一小节结束后,课程都还附有检验学习效果的小题目。
比如在第一节框架处理的学习结束后的题目是这样的:
在你选择完成后,系统会告诉参与者为什么是对的,为什么是错的:
当然也有编程练习,比如:
谷歌为什么这么做?
半个月前,一年一度的 MIT 十大突破性技术评选揭晓,“AI 大众化”位列其中,评选机构认为其突破性在于基于云的 AI 技术使得 AI 更加便宜且易于使用。
自从公司战略从 Mobile first 转变为 AI first 以来,Google 就不遗余力地推行人工智能的大众化,其中就包括像 TensorFlow 以及更有趣的一些项目,比如 Doodles等,这些实验旨在以更实用的方式展示 AI。
尽管如此,很多公司依然缺乏足够多会使用 AI 的人才,“人工智能人才缺口数百万”这样的报道也屡屡被朋友圈刷屏,所以谷歌正试图让更多的人能够通过 Learn with Google AI 来一起了解这个领域,并将人工智能和机器学习的人才汇聚起来,供他们了解机器学习核心概念、开发技巧以及应用其解决一些实际问题。
机器学习速成课程 (简称MLCC) 是谷歌的第一个课程计划,相信日后谷歌会上线更多的课程和资源。
祝大家学习愉快!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13