京公网安备 11010802034615号
经营许可证编号:京B2-20210330
逻辑回归算法学习与思考
本文是作者对于逻辑回归算法的学习和思考,主要介绍:逻辑回归的算法介绍、逻辑回归的数学原理、逻辑回归的实际应用、逻辑回归的总结以及网络安全场景预测,欢迎大家参考讨论。
逻辑回归的算法介绍
逻辑回归(Logistic regression)是机器学习分类算法的其中一种,核心思想是利用现有数据对分类边界建立回归方程,以此进行分类。回归可以理解为最佳拟合,是一种选择最优分类的算法。
逻辑归回中会有一些新词汇需要理解。
h函数: 根据输入的数据预测类别的函数,Andrew Ng的公开课中称为hypothesis function。
j函数: 我们需要一个机制去评估我们的h函数的好坏,j函数的作用是评估h函数的好坏,一般这个函数称为损失函数(loss function)或者错误函数(error function)。
逻辑回归的数学原理
h函数相关(预测函数)
首先,我们先看看逻辑回归的预测函数,h函数!
其中含有θ (又称:theta)的变量为(当x0=1时,可以进行矩阵变换):
h函数的原型函数为sigmoid函数,展示如下:
sigmoid方程的图形如下,sigmoid函数的取值范围为 (0,1)
这里进行下小结,逻辑回归的预测函数使用sigmoid函数作为原型函数,然后对sigmoid函数的x进行替换,替换为一个多元一次方程。其中多元一次方程的θ为我要寻找最优组合的内容。
j函数相关
j函数的目标就是找到一组最佳θ,使得J(θ)的值最小。
我们可以利用梯度下降算法来求得J(θ)的值最小,根据梯度下降法可得θ的更新过程。j=0 时,代表更新j向量的第0分量,j=1 时,代表更新j向量的第1分量,以此类,为了方便理解,可以把j看成数组vector_j,j=0,就是更新vector_j[0]。α为学习步长。
经过一些数学推导的最终形式如下(推导过程为对θ求偏导数)。
ps:xj为x向量的第j分量,还可以理解为x数组的第j项,其实下图是对θ数组的第j项进行更新的算式,然而真正代码角度是对整个θ数组进行更新,也就是下下图的样子。
当我们把上式向量化处理就得到了代码可以处理的形式。
对比着代码看(代码出自《机器学习实战》)
这里进行下小结,我们为了寻找最佳的θ组合,设置了J(θ)函数,我们利用已知数据(建模的训练数据)来寻找最优的θ组合使得J(θ)最小,而我们找最优θ组合的算法为梯度下降算法。
逻辑回归的实际应用
目前单机使用机器学习算法的python库为sklearn库,实例如下。
使用该模型,需要手工调整函数的参数,这个需要对算法进行理解。
逻辑回归的总结
Logistic Regression算法作为一个二分类算法,主要解决的是线性可分的问题,对于多分类算法,可以利用Softmax Regression算法。
Softmax Regression是一般化的Logistic Regression,可以把Logistic Regression看成Softmax Regression的特例。
那么Softmax Regression和Logistic Regression该怎么选择呢?参考Stanford的文章的内容。
Softmax 回归 vs. k 个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
网络安全场景下的实践
逻辑回归算法作为一个二分类机器学习算法,主要优势是学习速度快,算法好理解,预测速度快等特点,并且神经网络在神经元上也是采用的是逻辑回归算法,因此在这个深度学习的大背景下,安全人员还是要学习逻辑回归算法。
对于在安全攻防上使用逻辑回归算法,我们先要明白逻辑回归算法的本质:逻辑回归是分类算法。
吸星是安全在机器学习实践上一个非常好的例子,由于吸星使用的是朴素贝叶斯分类算法,那么吸星能不能使用逻辑回顾呢?效果如何呢?这是值得实践的。
异常流量识别,由于瞬时流量或者流量区间中会存在非常多的属性,而且异常流量识别属于二分类,逻辑回归对于异常流量监测问题,这也是非常值得实践的。
网站异常URL识别,对于一个网站,URL的形式具有一定特征的,那么如果被种植了webshell,那么webshell的URL可能会与正常URL存在差异,因此利用此逻辑回归也是能解决这类问题的。
其实总结起来就是,只要每一条数据可以有多个属性,就可以利用逻辑回归。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27