
牛津、剑桥等专家联合发布报告:警惕AI在未来的恶意使用
当谈到人工智能所带来的危险,我们通常强调的是意想不到的副作用。我们担心可能在无意间创造了超级智能AI,但在编程中没有加入道德约束; 或者我们部署了刑事判决算法,这些算法包括了训练数据的偏见。
但这只是一方面。
但是那些想把AI用于不道德行为、犯罪或恶意目的的人呢?这些人群是否更有可能利用AI进行恶意攻击?
来自牛津大学的人类未来研究所、剑桥大学的潜在风险研究中心和Elon Musk支持的非营利性OpenAI等十四家组织机构的二十六名专家认为,以上两个问题的答案是肯定的。
在上周发布的《人工智能的恶意使用:预测、预防和缓解》(The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation)的报告中,这些学者和研究人员列举了在未来5年内AI可能给我们生活带来危害的方式,以及能够阻止这些危害的方法。虽然AI给人们带来新型的攻击,该报告的合著者,来自人类未来研究所的Miles Brundage认为,我们并不该感到恐慌或放弃希望。
“我倾向于保持乐观,我们可以采取许多措施,”Brundage认为。“这篇报告的目的并不是描述未来惨淡的前景,而意味着我们可以采取大量防御措施,并且还有很多需要学习的东西。我并不认为这是没有希望的,这篇报告更像是倡导书。”
近100页的报告内容广泛,当中重点介绍了AI将加剧数字、物理安全系统的威胁,以及创造新型危险的方式。还阐述了解决这些问题的五条建议:包括让AI工程师了解他们研究中可能存在的恶意使用; 启动政策制定者和学者之间的交流对话,避免政府和执法机构对此一无所知。
AI将减少威胁成本
其中最主要的威胁在于:AI能够让需要人工完成的任务自动化,从而大大减少攻击成本。
比如,钓鱼攻击,即某人发送其中特别设计的信息,诱使他人放弃安全凭证(比如冒充银行的电子邮件)。当中的大部分工作可以由AI自动完成,映射出个人的社交和专业网络,然后生成消息。比如通过创建聊天机器人冒充好友,向你索要邮箱密码等。
这种攻击听起来很复杂,但一旦你创建了这些软件,那么就可以反复使用,而不需要额外成本。钓鱼邮件已经带来了足够的危害,比如2014年好莱坞名人iCloud照片泄露事件,以及希拉里克林顿的竞选主席John Podesta私人邮件的泄露事件。
AI将增加威胁的新维度
第二大要点是,AI会为现有威胁增加新的维度。
比如在钓鱼攻击中,AI不仅可用于生邮件和短信,还可以用来伪造音频和视频。AI可以通过几分钟的语音来模拟目标人物的声音,甚至生成虚假的视频。这种新型的威胁形式将在未来五年成为不可忽视的问题。
AI将带来的全新威胁
最后,报告介绍了AI带来的全新威胁。当中列出了一些可能出现的场景,比如恐怖分子将植入炸弹的清洁机器人带入政府部门。机器人利用内置的视觉感应系统追踪特定的目标,当靠近目标时炸弹引爆。这利用了AI的新产品(清洁机器人)和其自主功能(机器视觉追踪)。
这些情景听起来似乎有些不切实际,但我们已经目睹了利用AI进行的新型攻击。比如用deepfakes用深度学习技术,在未经同意的情况下所合成将名人的脸合成到色情视频中。虽然目前还未出现引人注目的案例,但不法分子可以利用这种方式进行骚扰和勒索。
我们能做什么
报告中的这些例子让你不禁思考:我们能做什么?
报告中提出了五个主要建议:
· AI人员应该告知研究中可能被恶意使用的情况;
· 决策者需要向技术专家了解这些潜在威胁;
· AI领域需要向网络安全专家学习如何更好地进行系统保护;
· 需要制定AI的道德伦理框架,并严格遵循;
· 需要有更多的人的参与。不仅仅是AI科学家和决策者,还包括伦理学家,企业和普通大众。
换句话说:我们需要更多的交流以及更多的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22