京公网安备 11010802034615号
经营许可证编号:京B2-20210330
牛津、剑桥等专家联合发布报告:警惕AI在未来的恶意使用
当谈到人工智能所带来的危险,我们通常强调的是意想不到的副作用。我们担心可能在无意间创造了超级智能AI,但在编程中没有加入道德约束; 或者我们部署了刑事判决算法,这些算法包括了训练数据的偏见。
但这只是一方面。
但是那些想把AI用于不道德行为、犯罪或恶意目的的人呢?这些人群是否更有可能利用AI进行恶意攻击?
来自牛津大学的人类未来研究所、剑桥大学的潜在风险研究中心和Elon Musk支持的非营利性OpenAI等十四家组织机构的二十六名专家认为,以上两个问题的答案是肯定的。
在上周发布的《人工智能的恶意使用:预测、预防和缓解》(The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation)的报告中,这些学者和研究人员列举了在未来5年内AI可能给我们生活带来危害的方式,以及能够阻止这些危害的方法。虽然AI给人们带来新型的攻击,该报告的合著者,来自人类未来研究所的Miles Brundage认为,我们并不该感到恐慌或放弃希望。
“我倾向于保持乐观,我们可以采取许多措施,”Brundage认为。“这篇报告的目的并不是描述未来惨淡的前景,而意味着我们可以采取大量防御措施,并且还有很多需要学习的东西。我并不认为这是没有希望的,这篇报告更像是倡导书。”
近100页的报告内容广泛,当中重点介绍了AI将加剧数字、物理安全系统的威胁,以及创造新型危险的方式。还阐述了解决这些问题的五条建议:包括让AI工程师了解他们研究中可能存在的恶意使用; 启动政策制定者和学者之间的交流对话,避免政府和执法机构对此一无所知。
AI将减少威胁成本
其中最主要的威胁在于:AI能够让需要人工完成的任务自动化,从而大大减少攻击成本。
比如,钓鱼攻击,即某人发送其中特别设计的信息,诱使他人放弃安全凭证(比如冒充银行的电子邮件)。当中的大部分工作可以由AI自动完成,映射出个人的社交和专业网络,然后生成消息。比如通过创建聊天机器人冒充好友,向你索要邮箱密码等。
这种攻击听起来很复杂,但一旦你创建了这些软件,那么就可以反复使用,而不需要额外成本。钓鱼邮件已经带来了足够的危害,比如2014年好莱坞名人iCloud照片泄露事件,以及希拉里克林顿的竞选主席John Podesta私人邮件的泄露事件。
AI将增加威胁的新维度
第二大要点是,AI会为现有威胁增加新的维度。
比如在钓鱼攻击中,AI不仅可用于生邮件和短信,还可以用来伪造音频和视频。AI可以通过几分钟的语音来模拟目标人物的声音,甚至生成虚假的视频。这种新型的威胁形式将在未来五年成为不可忽视的问题。
AI将带来的全新威胁
最后,报告介绍了AI带来的全新威胁。当中列出了一些可能出现的场景,比如恐怖分子将植入炸弹的清洁机器人带入政府部门。机器人利用内置的视觉感应系统追踪特定的目标,当靠近目标时炸弹引爆。这利用了AI的新产品(清洁机器人)和其自主功能(机器视觉追踪)。
这些情景听起来似乎有些不切实际,但我们已经目睹了利用AI进行的新型攻击。比如用deepfakes用深度学习技术,在未经同意的情况下所合成将名人的脸合成到色情视频中。虽然目前还未出现引人注目的案例,但不法分子可以利用这种方式进行骚扰和勒索。
我们能做什么
报告中的这些例子让你不禁思考:我们能做什么?
报告中提出了五个主要建议:
· AI人员应该告知研究中可能被恶意使用的情况;
· 决策者需要向技术专家了解这些潜在威胁;
· AI领域需要向网络安全专家学习如何更好地进行系统保护;
· 需要制定AI的道德伦理框架,并严格遵循;
· 需要有更多的人的参与。不仅仅是AI科学家和决策者,还包括伦理学家,企业和普通大众。
换句话说:我们需要更多的交流以及更多的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07