京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学职业生涯路径:如何在数据分析工作中找准自己的角色和定位
写在前面
全世界,企业每天都在创造更多的数据,迄今为止大多数都在努力从中受益。根据麦肯锡的说法,仅美国就将面临150,000多名数据分析师的短缺另加150万个精通数据的管理者。
美国企业与高等教育论坛(BHEF)与普华永道(PWC)近期发布的重要报告也指出“数据分析的人才需求每年都在增长,而每年的高校毕业生数量远远无法满足行业需求。”换言之,现在入行数据分析师恰逢其时。
但是在入行之前,C君忍不住问一句,你们知道什么是精通数据的管理者吗?这所有的数据科学家都是一样的吗?下图为我们揭示了国外数据科学的不同角色和定位:
而以当前中国数据人才的市场来看,主要分为数据专员(统计员)、数据运营、数据分析师、数据分析工程师、数据挖掘工程师、数据策略师(数据产品经理)、算法工程师等职位岗位,那么数据人才的第一步踏出以后该如何确定自己的职业角色和定位?
业务数据分析师(数据专员、数据运营等)
业务数据分析师对应的CDA一级考试。他们是数据分析师的一个子集,他们更关心的是数据的业务含义和应该导致操作。
你能拿到的薪水
业务数据分析师作为入门级的角色,往往是数据科学角色中报酬最少的,月薪一般为5k-15k
你需要掌握的知识
理论基础:概率论、统计学理论基础
软件要求:必要Excel、SQL;可选SPSS、SAS、R等
业务分析能力:熟知业务,能够根据问题业务指标提取公司数据库中相关数据,进行整理、清洗、处理,通过相应数据分析方法,结合软件平台应用完成对数据的分析和报告。
结果展现能力:能够形成逻辑清晰的报告,传递分析结果,对实际业务提出建议和策略。
建模分析师(数据挖掘工程师、大数据工程师)
建模分析师对应的是CDA二级建模分析师考试。他们通常扮演一个数据工程师的角色。主要依靠他们的软件工程经验来处理大规模的大量数据。他们通常专注于编码,清理数据集,以及实施来自数据科学家的请求。他们通常知道从Python到Java的各种各样的编程语言。当有人从数据科学家那里获取预测模型并用代码实现它。
你能拿到的薪水
建模分析师作为数据工程师,在数据科学角色中占据着十分重要的地位,月薪一般为15k-25k
你需要掌握的知识:
理论基础:统计学、概率论和数理统计、多元统计分析、时间序列、数据挖掘(DM)
软件要求:必要Excel、SQL;可选SPSS MODELER、R、Python、SAS等
业务分析能力:Data可以将业务目标转化为数据分析目标;熟悉常用算法和数据结构,熟悉企业数据库构架建设;针对不同分析主体,可以熟练的进行维度分析,能够从海量数据中搜集并提取信息;通过相关数据分析方法,结合一个或多个数据分析软件完成对海量数据的处理和分析。
结果展现能力:报告体现数据挖掘的整体流程,层层阐述信息的收集、模型的构建、结果的验证和解读,对行业进行评估,优化和决策。
第三阶:大数据分析师(大数据架构师、大数据工程师)
大数据分析师对应的是CDA二级大数据分析师考试。他们专注于构建管理数据模型的技术,仔细检查数据,并提供报告和可视化来解释数据隐藏的见解,模型的优化和改进等。
你能拿到的薪水
大数据分析师作为架构的搭建者,在编程框架中举足轻重,月薪一般为25k-50k
你需要掌握的知识
理论基础:统计学、概率论和数据库、数据挖掘、JAVA基础、Linux基础
软件要求:必要 SQL、Hadoop、HDFS、Mapreduce、Mahout、Hive、Spark;可选R、Hadoop、Hbase、ZooKeeper、Pig等
业务分析能力:熟悉hadoop+hive+spark进行大数据分析的架构设计,并能针对不同的业务提出大数据架构的解决思路。掌握hadoop+hive+ Spark+tableau平台上Spark MLlib、SparkSQL的功能与应用场景,根据不同的数据业务需求选择合适的组件进行分析与处理。并对基于Spark框架提出的模型进行对比分析与完善。
结果展现能力:报告能体现大数据分析的优势,能清楚地阐述数据采集、大数据处理过程及最终结果的解读,同时提出模型的优化和改进之处,以利于提升大数据分析的商业价值。
第四阶:数据科学家
数据科学家对应的是CDA三级数据分析科学家考试。扮演数据科学家角色的人可能是运用统计学和算法的理论知识找到解决数据科学问题的最佳方法的人,可能是建立一个模型来预测下个月信用卡违约的数量的人……
你能拿到的薪水
数据科学家是数据科学的编程与实现,数据科学理论和数据的商业影响之间的桥梁,年薪一般在60W以上。
你需要掌握的知识
软件要求:必要Excel、SQL;可选R、Python、SAS、Hadoop等
业务分析能力带领数据团队,能够将企业的数据资产进行有效的整合和管理,建立内外部数据的连接;熟悉数据仓库的构造理论,可以指导ETL工程师业务工作;可以面向数据挖掘运用主题构造数据集市;在人和数据之间建立有机联系,面向用户数据创造不同特性的产品和系统;具有数据规划的能力。
结果展现能力带领数据团队,能够将企业的数据资产进行有效的整合和管理,建立内外部数据的连接;熟悉数据仓库的构造理论,可以指导ETL工程师业务工作;可以面向数据挖掘运用主题构造数据集市;在人和数据之间建立有机联系,面向用户数据创造不同特性的产品和系统;具有数据规划的能力。
结论
数据科学是一个新的,令人兴奋的领域,它需要符合具体定数据科学角色的个人聚在一起,解决前沿问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11