
简单易学的机器学习算法——K-Means++算法
一、K-Means算法存在的问题
由于K-Means算法的简单且易于实现,因此K-Means算法得到了很多的应用,但是从K-Means算法的过程中发现,K-Means算法中的聚类中心的个数k需要事先指定,这一点对于一些未知数据存在很大的局限性。其次,在利用K-Means算法进行聚类之前,需要初始化k个聚类中心,在上述的K-Means算法的过程中,使用的是在数据集中随机选择最大值和最小值之间的数作为其初始的聚类中心,但是聚类中心选择不好,对于K-Means算法有很大的影响。对于如下的数据集:
如选取的个聚类中心为:
最终的聚类结果为:
为了解决因为初始化的问题带来K-Means算法的问题,改进的K-Means算法,即K-Means++算法被提出,K-Means++算法主要是为了能够在聚类中心的选择过程中选择较优的聚类中心。
二、K-Means++算法的思路
K-Means++算法在聚类中心的初始化过程中的基本原则是使得初始的聚类中心之间的相互距离尽可能远,这样可以避免出现上述的问题。K-Means++算法的初始化过程如下所示:
在数据集中随机选择一个样本点作为第一个初始化的聚类中心
选择出其余的聚类中心:
计算样本中的每一个样本点与已经初始化的聚类中心之间的距离,并选择其中最短的距离,记为d_i
以概率选择距离最大的样本作为新的聚类中心,重复上述过程,直到k个聚类中心都被确定
对k个初始化的聚类中心,利用K-Means算法计算最终的聚类中心。
在上述的K-Means++算法中可知K-Means++算法与K-Means算法最本质的区别是在k个聚类中心的初始化过程。
Python实现:
一、K-Means算法存在的问题
由于K-Means算法的简单且易于实现,因此K-Means算法得到了很多的应用,但是从K-Means算法的过程中发现,K-Means算法中的聚类中心的个数k需要事先指定,这一点对于一些未知数据存在很大的局限性。其次,在利用K-Means算法进行聚类之前,需要初始化k个聚类中心,在上述的K-Means算法的过程中,使用的是在数据集中随机选择最大值和最小值之间的数作为其初始的聚类中心,但是聚类中心选择不好,对于K-Means算法有很大的影响。对于如下的数据集:
如选取的个聚类中心为:
最终的聚类结果为:
为了解决因为初始化的问题带来K-Means算法的问题,改进的K-Means算法,即K-Means++算法被提出,K-Means++算法主要是为了能够在聚类中心的选择过程中选择较优的聚类中心。
二、K-Means++算法的思路
K-Means++算法在聚类中心的初始化过程中的基本原则是使得初始的聚类中心之间的相互距离尽可能远,这样可以避免出现上述的问题。K-Means++算法的初始化过程如下所示:
在数据集中随机选择一个样本点作为第一个初始化的聚类中心
选择出其余的聚类中心:
计算样本中的每一个样本点与已经初始化的聚类中心之间的距离,并选择其中最短的距离,记为d_i
以概率选择距离最大的样本作为新的聚类中心,重复上述过程,直到k个聚类中心都被确定
对k个初始化的聚类中心,利用K-Means算法计算最终的聚类中心。
在上述的K-Means++算法中可知K-Means++算法与K-Means算法最本质的区别是在k个聚类中心的初始化过程。
Python实现:
# coding:UTF-8
'''
Date:20160923
@author: zhaozhiyong
'''
import numpy as np
from random import random
from KMeans import load_data, kmeans, distance, save_result
FLOAT_MAX = 1e100 # 设置一个较大的值作为初始化的最小的距离
def nearest(point, cluster_centers):
min_dist = FLOAT_MAX
m = np.shape(cluster_centers)[0] # 当前已经初始化的聚类中心的个数
for i in xrange(m):
# 计算point与每个聚类中心之间的距离
d = distance(point, cluster_centers[i, ])
# 选择最短距离
if min_dist > d:
min_dist = d
return min_dist
def get_centroids(points, k):
m, n = np.shape(points)
cluster_centers = np.mat(np.zeros((k , n)))
# 1、随机选择一个样本点为第一个聚类中心
index = np.random.randint(0, m)
cluster_centers[0, ] = np.copy(points[index, ])
# 2、初始化一个距离的序列
d = [0.0 for _ in xrange(m)]
for i in xrange(1, k):
sum_all = 0
for j in xrange(m):
# 3、对每一个样本找到最近的聚类中心点
d[j] = nearest(points[j, ], cluster_centers[0:i, ])
# 4、将所有的最短距离相加
sum_all += d[j]
# 5、取得sum_all之间的随机值
sum_all *= random()
# 6、获得距离最远的样本点作为聚类中心点
for j, di in enumerate(d):
sum_all -= di
if sum_all > 0:
continue
cluster_centers[i] = np.copy(points[j, ])
break
return cluster_centers
if __name__ == "__main__":
k = 4#聚类中心的个数
file_path = "data.txt"
# 1、导入数据
print "---------- 1.load data ------------"
data = load_data(file_path)
# 2、KMeans++的聚类中心初始化方法
print "---------- 2.K-Means++ generate centers ------------"
centroids = get_centroids(data, k)
# 3、聚类计算
print "---------- 3.kmeans ------------"
subCenter = kmeans(data, k, centroids)
# 4、保存所属的类别文件
print "---------- 4.save subCenter ------------"
save_result("sub_pp", subCenter)
# 5、保存聚类中心
print "---------- 5.save centroids ------------"
save_result("center_pp", centroids)
其中,KMeans所在的文件为:
# coding:UTF-8
'''
Date:20160923
@author: zhaozhiyong
'''
import numpy as np
def load_data(file_path):
f = open(file_path)
data = []
for line in f.readlines():
row = [] # 记录每一行
lines = line.strip().split("\t")
for x in lines:
row.append(float(x)) # 将文本中的特征转换成浮点数
data.append(row)
f.close()
return np.mat(data)
def distance(vecA, vecB):
dist = (vecA - vecB) * (vecA - vecB).T
return dist[0, 0]
def randCent(data, k):
n = np.shape(data)[1] # 属性的个数
centroids = np.mat(np.zeros((k, n))) # 初始化k个聚类中心
for j in xrange(n): # 初始化聚类中心每一维的坐标
minJ = np.min(data[:, j])
rangeJ = np.max(data[:, j]) - minJ
# 在最大值和最小值之间随机初始化
centroids[:, j] = minJ * np.mat(np.ones((k , 1))) + np.random.rand(k, 1) * rangeJ
return centroids
def kmeans(data, k, centroids):
m, n = np.shape(data) # m:样本的个数,n:特征的维度
subCenter = np.mat(np.zeros((m, 2))) # 初始化每一个样本所属的类别
change = True # 判断是否需要重新计算聚类中心
while change == True:
change = False # 重置
for i in xrange(m):
minDist = np.inf # 设置样本与聚类中心之间的最小的距离,初始值为争取穷
minIndex = 0 # 所属的类别
for j in xrange(k):
# 计算i和每个聚类中心之间的距离
dist = distance(data[i, ], centroids[j, ])
if dist < minDist:
minDist = dist
minIndex = j
# 判断是否需要改变
if subCenter[i, 0] <> minIndex: # 需要改变
change = True
subCenter[i, ] = np.mat([minIndex, minDist])
# 重新计算聚类中心
for j in xrange(k):
sum_all = np.mat(np.zeros((1, n)))
r = 0 # 每个类别中的样本的个数
for i in xrange(m):
if subCenter[i, 0] == j: # 计算第j个类别
sum_all += data[i, ]
r += 1
for z in xrange(n):
try:
centroids[j, z] = sum_all[0, z] / r
except:
print " r is zero"
return subCenter
def save_result(file_name, source):
m, n = np.shape(source)
f = open(file_name, "w")
for i in xrange(m):
tmp = []
for j in xrange(n):
tmp.append(str(source[i, j]))
f.write("\t".join(tmp) + "\n")
f.close()
最终的结果为:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22