京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在采用机器学习算法对数据进行分析时,首先要对数据进行了解,而了解数据最快速的方式就是可视化。但是作者可视化采用的方法对很多data都通用,且采用的是各种图形的图矩阵,如直方图、散点图矩阵等等。本文就根据作者的分析来介绍如何运用pandas作各种矩阵图。
(1)数据
数据为PimaIndians dataset,在作者的代码中包含该数据来源网址,即皮马印第安人糖尿病数据集,样本个数有768个,包含变量有:
Preg:怀孕次数
Plas:口服葡萄糖耐量试验中血浆葡萄糖浓度为2小时
Pres:舒张压(mm Hg)
Skin:三头肌皮褶厚度(mm)
test :2小时血清胰岛素(μU/ml)
mass:体重指数(kg /(身高(m))^ 2)
pedi:糖尿病血统功能
age:年龄(岁)
class:类变量(0或1),估计是性别。
(2)Histograms(直方图矩阵)
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] #设置变量名 data = pandas.read_csv(url, names=names) #采用pandas读取csv数据 data.hist() plt.show()
但是,我们看到图形并不协调,存在变量与坐标重叠的情况,我们可以调整hist()的参数来解决,包括对x轴、y轴标签大小的调节((xlabelsize,ylabelsize),整个图形布局大小的调节figsize:
data.hist(xlabelsize=7,ylabelsize=7,figsize=(8,6)) # plt.show()
可以看到每一个变量的分布情况,其中mass、plas、pres呈现一定的正态分布,其他除了class之外,基本上左偏。
(3)Density Plots(密度图矩阵)
原始代码输出后仍然存在重叠的地方,在这里加入了对图中坐标文字fontsize,以及整体布局大小figsize。
(4)箱线图矩阵(Box and Whisker Plots)
与(3)类似,在这里注意可以共享x轴和y轴,用了sharex=False, sharey=False的命令。
(5)相关系数矩阵图(Correlation Matrix Plot)
import numpy correlations = data.corr() #计算变量之间的相关系数矩阵 # plot correlation matrix fig = plt.figure() #调用figure创建一个绘图对象 ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) #绘制热力图,从-1到1 fig.colorbar(cax) #将matshow生成热力图设置为颜色渐变条 ticks = numpy.arange(0,9,1) #生成0-9,步长为1 ax.set_xticks(ticks) #生成刻度 ax.set_yticks(ticks) ax.set_xticklabels(names) #生成x轴标签 ax.set_yticklabels(names) plt.show()
颜色越深表明二者相关性越强。
(6)散布图矩阵(Scatterplot Matrix)
from pandas.tools.plotting import scatter_matrix scatter_matrix(data,figsize=(10,10)) plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30