京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析大数据对政府2.0的推进作用
1 大数据是信息革命的又一里程碑
1.1 大数据时代来临
大数据从狭义上讲,是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合;从广义上讲,是从各种类型的海量信息中快速获得有价值信息的能力,人类思维和决策的方式及方法将进入更高层次,有了大数据的这种能力,人类才能真正从“智能”走向“智慧”。
随着信息技术特别是信息通讯技术的发展,互联网、WEB2.0、社交网络、物联网、移动互联网、云计算等相继进入人们的日常工作和生活中,全球数据信息量呈指数式爆炸增长之势,根据国际数据公司IDC发布的研究报告,2011年全球创建和复制的数据总量为1.8ZB(约1.8万亿GB),预计全球数据量大约每两年翻一番,到2020年全球将达到35ZB的数据信息量。如今,人在每分每秒产生的数据(包括位置、状态,见闻、言论等等)都能够被数字化并进入互联网,各类传感器可以应用到各个领域收集我们所需的数据,甚至能植入人体,新的互联网址协议IPv6可以标识如家用电器、远程照相机、汽车、传感器等,甚至可以细微到大海里的一颗沙子,数据库巨人JimGray预测,到2047年现实世界人、事、物的所有信息都将上网。前所未有的巨量数据信息正在聚集,人类步入大数据时代。
大数据时代,数据衡量度向纵深定义,我们有了TB(1TB=1024GB)、PB(1PB=1024TB)、EB(1EB=1024PB)、ZB(1ZB=1024EB)、YB(1YB=1024ZB)、BB(1BB=1024YB),数据规模蓬勃发展。同时,需要分析处理的数据类型也正在不断扩展,我们从传统的结构化数据(二维表数据)向越来越多原先无法用常规软件深化分析的非结构化数据扩展,如文本、图型、语音、视频等。随着互联网上各种应用不断涌现,诸如社交网络、电子商务、众包平台、位置服务等,非结构化信息的增长远快于结构化数据的增长。不断发展的信息技术和方法,使我们的视野、我们的能力进入更广更深的领域,就像人类有了天文望远镜我们能探知浩瀚的宇宙一样,如今我们已经进入能够探索和应用规模形态超常的“大数据原矿”的时代。
大数据代表着信息技术未来发展的战略走向,它将引发技术领域跨越式发展,是继互联网后的又一次信息革命。
1.2 大数据创造大价值
巨量数据正在成为一种资源,一种生产要素,渗透至各个领域,而拥有大数据能力,即善于聚合信息并有效利用数据,将会带来层出不穷的创新,从某种意义上说它代表着一种生产力,麦肯锡认为,“人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来”
大数据将带来此起彼伏的IT技术革命。为解决日益增长的海量数据、数据多样性、数据处理时效性等问题,一定会在存储器、数据仓库、系统架构、人工智能、数据挖掘分析以及信息通讯等方面不断涌现突破性技术,当今世界IT巨头、IT敏锐的创新者们正努力耕耘在大数据技术领域,大数据将成为IT的主战场。
大数据将在各行各业引发各类创新模式。随着大数据的发展,行业渐进融合,以前认为不相关的行业通过大数据技术有了相通的渠道,沃尔玛通过数据挖掘将风马牛不相及的“啤酒与尿布”联系在一起,大数据将会产生新的生产模式、商业模式、管理模式,这些新模式对经济社会发展带来深刻影响。
大数据将给人们生活带来翻天覆地的变化。大数据技术进步将极大地惠及人们生活的方方面面,在家有智能管家帮助你美好生活;外出购物,商家会根据你的消费习惯将购物信息通过无线互联网推送给你;外出就餐,车载语音助手会帮你挑选餐厅并告诉你即时的周边情况和停车状况。衣食住行的便利将无处不在。
大数据将提升电子政务和政府社会治理的效率。大数据的包容性将打开政府各部门间、政府与市民间的边界,信息孤岛现象大幅消减,数据共享成为可能,政府各机构协同办公效率和为民办事效率提高,同时大数据将极大地提升政府社会治理能力和公共服务能力。
2 电子政务向政府2.0进阶
2.1 WEB2.0催生政府2.0
电子政务迄今为止经历了四个阶段:第一阶段是政府信息公开阶段,政府部门建立各自的门户网站,对政府信息进行分类并予以公开,提供及时准确的政务信息和公共服务事项的表格下载;第二阶段是业务办理的信息化阶段,政府部门对外服务和管理的事项实现在线处理,在信息系统和数据库的支撑下,实现业务办理信息化;第三阶段是纵向信息系统整合阶段,相同的上下级政府部门利用多级网络和中心数据库实现三级政府部门甚至四级政府部门的信息系统整合,构建统一的信息平台;第四阶段是水平的电子政务信息系统整合阶段,实现跨部门的政府信息资源共享和政务协同。电子政务发展的四阶段历程是从单向的政务信息传播,到在线服务,再到高效的政务办公,其关注的焦点是政府本身的电子政务建设。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07