京公网安备 11010802034615号
经营许可证编号:京B2-20210330
快学数据挖掘—数据探索—贡献度分析
贡献度分析又称帕累托分析,它的原理是帕累托法则又称20/80定律。同样的投入放在不同的地方会产生不同的效益。例如,对一个公司来讲,80%的利润常常来自于20%最畅销的产品,而其他80%的产品只产生了20%的利润。
帕累托图
帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成。它是将出现的质量问题和质量改进项目按照重要程度依次排列而采用的一种图表。可以用来分析质量问题,确定产生质量问题的主要因素。按等级排序的目的是指导如何采取纠正措施:项目班子应首先采取措施纠正造成最多数量缺陷的问题。从概念上说,帕累托图与帕累托法则一脉相承,该法则认为相对来说数量较少的原因往往造成绝大多数的问题或缺陷
排列图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率.分析线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左到右排列,通过对排列图的观察分析可以抓住影响质量的主要因素.
帕累托法则往往称为二八原理,即百分之八十的问题是百分之二十的原因所造成的。帕累托图在项目管理中主要用来找出产生大多数问题的关键原因,用来解决大多数问题。
SPSS帕累托图
catering_dish_profit.xls
数据集下载地址
帕累托图就餐饮企业来讲,应用贡献度分析可以重点改善某菜系盈利最高的前80%的菜品,或者重点发展综合影响最高的80%的部门。这种结果可以通过帕累托图直观地呈现出来。上图是海鲜系列的十个菜品A1~A10某个月的盈利额(已按照从大到小排序)。
分析结果
由上图可知,菜品A1~A7共7个菜品,占菜品种类数的70%,总盈利额约占该月盈利额的85%。根据帕累托法则,应该增加对菜品A1~A7的成本投入,减少对菜品A8~A10的投入以获得更高的盈利额。
Python程序
#coding: utf-8
# dish_pareto.py
import matplotlib.pyplot as plt
from numpy import nan as NA
import pandas as pd
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
# 读取数据源
xlsFilename = "catering_dish_profit.xls"
#df = pd.read_excel(xlsFilename, index_col='菜品名')
df = pd.read_excel(xlsFilename)
#---------------------------------------------------------------------
# 绘制帕累托图
#plt.figure()
# 绘制直方图
df1 = df.loc[:,['菜品名', '盈利']]
df1 = df1.sort_values('盈利', ascending = False)
df1 = df1.set_index('菜品名')
df1.plot(kind='bar')
# 绘制线段
# sum()是计算样本的总和;cumsum()是依次给出前1,2,3.。。n个数的和
df3 = 1.0 * df1['盈利'].cumsum() / df1['盈利'].sum()
df3.plot(color = 'r', secondary_y = True, style = '-o',linewidth = 2)
# 绘制标注
df3 = df3.reset_index(drop=True)
df4 = df3[df3>=0.8][0:1]
pointX = df4.index[0]
pointY = df4[pointX]
plt.annotate(format(pointY, '.2%'), xy = (pointX, pointY), xytext=(pointX*0.9, pointY*0.9), arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) #添加注释,即85%处的标记。这里包括了指定箭头样式。
# 设置标签
plt.ylabel('盈利(元)')
plt.ylabel('盈利(比例)')
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12