京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的军事管理变革
大数据是信息技术又一次颠覆性变革。随着大数据技术在军事领域获得应用,数据数量、数据分析和处理能力、数据主导决策,将是获得战场优势的关键。在数据领域,以少胜多、以弱胜强、以模糊胜透明,基本不可能,这将使作战形式发生质的变化。如何以数据为中心精确设计和指挥战争,成为军事管理的新焦点。
管理大师戴明与德鲁克曾同时提出,“不会量化就无法管理”。有了大数据,军事管理者可以更多借助量化,提升管理质量和水平。
大数据坚持管理服务战斗力的原则。管理是为提高战斗力服务的,最高目标就是确保打赢可能发生的任何战争。大数据并未改变这一根本原则,但增加了数据色彩。一方面,数据成为巩固和提高战斗力的重要因素。在新型作战环境下,战场的实时态势信息、作战指挥命令、卫星过境、气象水文信息、传感器信息等,都是以数据形式存在并且传输的。这些不同来源、不同类型的数据是提高战斗力的“生命”。缺乏对数据的有效管理和利用,打赢战争将成为不可能。在不远的将来,数据的积累和运用将成为战斗力的标志。军事管理就是将大数据渗透、应用于战斗力生成、转化和实现的全过程,提高战斗力的整体水平。另一方面,数据本身成为战争的攻防中心。当大数据成为举足轻重的武器,就可能开启一种崭新的战争形态——数据战。这将是一种以数据攻击与防护为基本手段的全新作战样式,它通过掠夺、破坏和摧毁敌方数据资源,化数据优势为战争优势。大数据不但是信息的集成,更是打击手段的综合。在大数据支撑下,跨网攻击具备了实现条件,即使是与互联网物理隔离的军事数据系统,也可能不再拥有绝对安全的保障,数据攻防将会拓展到陆、海、空、天、电等多维空间。这就决定了军事管理必须着眼于打赢未来数据战争需要,努力提高部队数据作战能力。
大数据拓展了军事管理内涵。大数据的现实存在和军事价值,使如何管理大数据成为军事管理必然要回答的问题。数据采集是数据管理的源头。目前,我军数据采集还存在零散多综合少、局部多全局少的问题。需要通过对蕴含军事意义数据的专业化获取,掌握海量数据开发利用的主动权。数据分析是数据管理的关键。目的是从经过整合的、多来源的数据中找出规律,最终实现对数据的有效管控。数据安全是数据管理的底线。既要有效地堵塞国家和军事安全数据漏洞,防止被敌方破坏和获取;又要深度挖掘和全面掌握敌方高价值的数据资源,寻求战时攻击的数据突破点。此外,也要把保护官兵的个人数据隐私提上日程。
大数据创新了军事管理方法。从技术方法看,大数据研发的机器学习算法、图像可视化手段、数据共享技术、人机互动设备等,将极大推动军事管理技术的革新。从行政方法看,大数据带给管理者最重要的机会是更准确地了解和把握部属的需求特征、兴趣爱好、行为倾向等。
管理变革比技术升级更关键。大数据有彻底改变管理艺术的潜力,运用大数据管理应注意以下几点:
树立大数据理念。大数据产生的影响绝不限于技术层面,本质上,它为我们观察世界提供了一种全新方法。我军与外军的差距,除了装备,还有管理上的代差。其原因之一是我军缺乏以数据为基础的管理。而未来军队的进步,正赖于建立这种精确的管理体系。数据才是管理的根本,每个管理者都应有这样的意识和观念。但也要警惕泛大数据化,提防什么事都穿鞋戴帽,冠大数据之名,却无大数据之实。
实施大数据战略。要站在战略的高度,以全面、前瞻的思维和方法来应对大数据。加强顶层设计。可在加强大数据资源的深度开发利用与大数据技术自主创新方面进行调整,尽快提出大数据发展战略,理清思路,明确任务。统一数据标准。为保证部队现有和潜在用户都能发现数据,应尽快制定数据标准,保证大数据的可视化、可获取和可利用。实现共享应用。所有数据都要能在全军范围应用,既满足于预期的用户及需求,也能用于预期之外的用户及需求。
研发大数据技术。大数据研发的重点,是发展前沿核心技术,以满足搜集、存储、管理、分析和共享海量数据的需求。我国在海量数据分析、大数据处理、分布式计算、数据可视化等一些大数据关键技术上,还存在不小的差距。可如果盲目地在军队中引进和使用国外的先进技术,无疑会威胁国家和军队安全。所以要下大力研发我国我军的大数据技术,把“数据主权”牢牢掌握在自己手里,为实现强军目标提供坚强的技术支持和安全保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27