
大数据的大价值预测
数据本身是不会说话的,但是数据总结出的历史、数据反映出来的现状、数据呈现出的趋势能够说话。基于指标体系的预测分析平台建设的价值在于:平台展现出的任何一条曲线的变化都对应着某一个现状或问题,以及相关联的一系列指标,都意味着需要采取相应的改良措施。同时,由于行业数据的特殊性,结合专家的经验,可获取到管理上的缺陷,制定出相应的预防措施,反馈到企业的指标体系中,通过调整来进一步加强数据质量的管理,进而为有效提高续保率提供科学的数据依据。
2013年伊始,大数据开始充斥媒体,各行各业都相继进行数据分析、数据挖掘、领导决策等,那些占有“大数据”资源先天优势的群体,能否有效利用好数据,打破现有的传统格局,将决定其未来发展的命运。
大数据时代面临的挑战与机遇
大数据时代下的三百六十行,最不缺乏的就是数据,包括历史数据、行业最新数据等,但是却受阻于过量的冗余数据和数据不一致,而且它们变得越来越难于访问、管理和用于决策支持。目前的行业数据大多还停留在“集中化使用”阶段,传统的数据仓库方式,数据有进无出,仅解决了数据存储的问题,如何综合有效地使用这些数据,成为一大难题。而随着数据量成倍的增长,如何把这些大量的数据转换成可靠的信息以便于决策支持,是各行业面临的挑战。
大数据的本质是解决问题,大数据的核心价值就在于预测,而企业经营的核心也是基于预测所做出的正确判断。所以,我们应当充分地认识到:大数据时代对于各个业来讲,既存在挑战,也是一个巨大的机遇。
首先,面对海量数据,依靠在各行各业丰富的数据治理方法论,实现源头数据的质量保障,确保基于这些真实数据的分析与决策能够行之有效。
如何保障数据质量?
通过顶层设计的理念,确立企业的核心目标,围绕这个核心目标进行逐级分解,形成细颗粒度的详细指标体系,而基于指标体系的数据采集及处理平台,则以指标体系为依据,来到各个业务系统里去采集数据,或根据需要使用数据采集平台由人工进行填报,基于涉及各个指标的全样数据的完整采集,通过数据质量清洗工具与相应的检查规则,发现问题可及时对其进行修改,来对源头的数据从技术上进行严格把关。
其次,各行业的应用系统可谓纷繁复杂,由于这些系统的建设都是相对独立的,传统的数据处理方式只能针对各个业务系统去形成相应的分析数据,本质上未将数据进行整合与统一规划,因此形成了数据孤岛的现象。同方运用顶层设计理念下的指标体系梳理方法,以及业务元数据的技术手段,对各个业务系统的数据最终形成资源,进行统一化、标准化、集中化管理,实现数据的全局共享。用于综合应用、预测分析、领导决策等。
最后,通过基于指标体系的预测分析平台,能够为决策管理者提供科学的数据依据,同时也为涉及企业的客户管理、销售管理、市场管理、运维管理等各方面提供调整依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14