京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言二进制文件
二进制文件是一个文件,其中包含仅以位和字节形式存储的信息(0和1)。它们不可读,因为其中的字节转换为包含许多其他不可打印字符的字符和符号。尝试使用任何文本编辑器读取二进制文件将显示为类似Ø和ð这样的字符。
二进制文件必须由特定程序读取才能使用。例如,Microsoft Word程序的二进制文件只能通过Word程序读取到人类可读的形式。这表明,除了人类可读的文本之外,还有更多的信息,如格式化的字符和页码等,它们也与字母数字字符一起存储。最后二进制文件是一个连续的字节序列。 我们在文本文件中看到的换行符是将第一行连接到下一个的字符。
有时,由其他程序生成的数据需要由R作为二进制文件处理。 另外R需要创建可以与其他程序共享的二进制文件。
R有两个函数用来创建和读取二进制文件,它们分别是:WriteBin()和readBin()函数。
语法
writeBin(object,con)readBin(con,what,n)
以下是使用的参数的描述 -
con- 是要读取或写入二进制文件的连接对象。
object- 是要写入的二进制文件。
what- 是像字符,整数等的模式,代表要读取的字节。
n- 是从二进制文件读取的字节数。
实例
这里考虑使用R内置数据“mtcars”。 首先,我们从它创建一个csv文件并将其转换为二进制文件并将其存储为操作系统文件。接下来将这个二进制文件读入R中。
1. 写入二进制文件
我们将数据帧“mtcars”读为csv文件,然后将其作为二进制文件写入操作系统。参考以下代码实现 -
# Read the "mtcars" data frame as a csv file and store only the columns"cyl","am"and"gear". write.table(mtcars,file="mtcars.csv",row.names=FALSE,na="",col.names=TRUE,sep=",")# Store 5 records from the csv file as a new data frame.new.mtcars<-read.table("mtcars.csv",sep=",",header=TRUE,nrows=5)# Create a connection object to write the binary file using mode "wb".write.filename=file("/web/com/binmtcars.dat","wb")# Write the column names of the data frame to the connection object.writeBin(colnames(new.mtcars),write.filename)# Write the records in each of the column to the file.writeBin(c(new.mtcars$cyl,new.mtcars$am,new.mtcars$gear),write.filename)# Close the file for writing so that it can be read by other program.close(write.filename)
上面创建的二进制文件将所有数据作为连续字节存储。 因此,我们将通过选择列名称和列值的适当值来读取它。
# Create a connection object to read the file in binary mode using "rb".read.filename<-file("/web/com/binmtcars.dat","rb")# First read the column names. n = 3 as we have 3 columns.column.names<-readBin(read.filename,character(),n=3)# Next read the column values. n = 18 as we have 3 column names and 15 values.read.filename<-file("/web/com/binmtcars.dat","rb")bindata<-readBin(read.filename,integer(),n=18)# Print the data.print(bindata)# Read the values from 4th byte to 8th byte which represents "cyl".cyldata=bindata[4:8]print(cyldata)# Read the values form 9th byte to 13th byte which represents "am".amdata=bindata[9:13]print(amdata)# Read the values form 9th byte to 13th byte which represents "gear".geardata=bindata[14:18]print(geardata)# Combine all the read values to a dat frame.finaldata=cbind(cyldata,amdata,geardata)colnames(finaldata)=column.names print(finaldata)
当我们执行上面的代码,它产生以下结果和图表 -
[1] 7108963 1728081249 7496037 6 6 4 [7] 6 8 1 1 1 0 [13] 0 4 4 4 3 3 [1] 6 6 4 6 8 [1] 1 1 1 0 0 [1] 4 4 4 3 3 cyl am gear [1,] 6 1 4 [2,] 6 1 4 [3,] 4 1 4 [4,] 6 0 3 [5,] 8 0 3
我们可以看到,通过读取R中的二进制文件,得到了原始数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27