
R语言二进制文件
二进制文件是一个文件,其中包含仅以位和字节形式存储的信息(0和1)。它们不可读,因为其中的字节转换为包含许多其他不可打印字符的字符和符号。尝试使用任何文本编辑器读取二进制文件将显示为类似Ø和ð这样的字符。
二进制文件必须由特定程序读取才能使用。例如,Microsoft Word程序的二进制文件只能通过Word程序读取到人类可读的形式。这表明,除了人类可读的文本之外,还有更多的信息,如格式化的字符和页码等,它们也与字母数字字符一起存储。最后二进制文件是一个连续的字节序列。 我们在文本文件中看到的换行符是将第一行连接到下一个的字符。
有时,由其他程序生成的数据需要由R作为二进制文件处理。 另外R需要创建可以与其他程序共享的二进制文件。
R有两个函数用来创建和读取二进制文件,它们分别是:WriteBin()和readBin()函数。
语法
writeBin(object,con)readBin(con,what,n)
以下是使用的参数的描述 -
con- 是要读取或写入二进制文件的连接对象。
object- 是要写入的二进制文件。
what- 是像字符,整数等的模式,代表要读取的字节。
n- 是从二进制文件读取的字节数。
实例
这里考虑使用R内置数据“mtcars”。 首先,我们从它创建一个csv文件并将其转换为二进制文件并将其存储为操作系统文件。接下来将这个二进制文件读入R中。
1. 写入二进制文件
我们将数据帧“mtcars”读为csv文件,然后将其作为二进制文件写入操作系统。参考以下代码实现 -
# Read the "mtcars" data frame as a csv file and store only the columns"cyl","am"and"gear". write.table(mtcars,file="mtcars.csv",row.names=FALSE,na="",col.names=TRUE,sep=",")# Store 5 records from the csv file as a new data frame.new.mtcars<-read.table("mtcars.csv",sep=",",header=TRUE,nrows=5)# Create a connection object to write the binary file using mode "wb".write.filename=file("/web/com/binmtcars.dat","wb")# Write the column names of the data frame to the connection object.writeBin(colnames(new.mtcars),write.filename)# Write the records in each of the column to the file.writeBin(c(new.mtcars$cyl,new.mtcars$am,new.mtcars$gear),write.filename)# Close the file for writing so that it can be read by other program.close(write.filename)
上面创建的二进制文件将所有数据作为连续字节存储。 因此,我们将通过选择列名称和列值的适当值来读取它。
# Create a connection object to read the file in binary mode using "rb".read.filename<-file("/web/com/binmtcars.dat","rb")# First read the column names. n = 3 as we have 3 columns.column.names<-readBin(read.filename,character(),n=3)# Next read the column values. n = 18 as we have 3 column names and 15 values.read.filename<-file("/web/com/binmtcars.dat","rb")bindata<-readBin(read.filename,integer(),n=18)# Print the data.print(bindata)# Read the values from 4th byte to 8th byte which represents "cyl".cyldata=bindata[4:8]print(cyldata)# Read the values form 9th byte to 13th byte which represents "am".amdata=bindata[9:13]print(amdata)# Read the values form 9th byte to 13th byte which represents "gear".geardata=bindata[14:18]print(geardata)# Combine all the read values to a dat frame.finaldata=cbind(cyldata,amdata,geardata)colnames(finaldata)=column.names print(finaldata)
当我们执行上面的代码,它产生以下结果和图表 -
[1] 7108963 1728081249 7496037 6 6 4 [7] 6 8 1 1 1 0 [13] 0 4 4 4 3 3 [1] 6 6 4 6 8 [1] 1 1 1 0 0 [1] 4 4 4 3 3 cyl am gear [1,] 6 1 4 [2,] 6 1 4 [3,] 4 1 4 [4,] 6 0 3 [5,] 8 0 3
我们可以看到,通过读取R中的二进制文件,得到了原始数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10