京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代企业怎么赢
如果你的企业希望投身大数据时代,现阶段最大的挑战是为海量业务数据找到商业用途。
在Gartner着名的技术成熟度曲线中,备受追捧的大数据技术或许还未攀上期望膨胀的顶峰。而在可以想见的未来,泡沫的幻灭或许会引发一连串的质疑。但对于企业而言,最重要的是不在潮起潮落中迷失自己最初的需求和渴望。无论对技术的追捧与质疑如何激烈,企业的领导者都需要明确业务对数据的真正需求,并且清晰地向IT部门进行表达,从而为多来源的海量业务数据找到真正的商业用途。
业务与IT合力价值发现
过去数年间,私人投资者和风险投资机构都将巨资投入到PB级别结构化与非结构化数据的采集、存储、治理和分析等新兴技术领域。新涌现出的工具让企业从Web日志、点击流、社交媒体、视频和音频文档、机器传感器和微博中提取数据变得前所未有的容易。在技术日臻完善的情况下,现阶段企业利用大数据的最大难点在于,让业务部门与IT部门相互合作,定义到底哪些非结构化和半结构化数据是对企业真正有价值的数据,以及如何对其有效地加以利用。
因此,真正的挑战并不在于技术,而在于大数据商业价值的发现。这一艰巨的任务需要IT和业务部门合力完成。现阶段,很多企业尚未开始对非结构化数据进行采集和整合,主要原因就是企业的业务管理者不能确认大数据是否能够为企业带来实际的商业价值,而并非是出于对创新技术的不信任。
互联网行业具备天生的大数据应用需求,并且拥有强壮的技术基因,这使得大数据技术的早期实践者多诞生于此。而在金融、电信、制造、医疗等传统行业,大数据技术也正在被重点关注,相关的需求梳理已经展开,并且有部分企业进入了初级实践阶段。
以金融行业为例,金融行业解决方案供应商北京先进数通信息技术有限公司研发部总经理完献忠就表示,国内银行目前的大数据应用尚处在初级阶段,主要集中在历史数据管理、查询和使用方面,面向业务的分析应用项目则处于探索和验证阶段。他指出,随着网上银行和手机银行的普及,并且向互联网银行的过渡,银行业传统上缺乏客户行为数据的情况正在发生根本的转变,银行业具备了通过互联网数据和机器数据开展有效客户营销的条件。
大数据打开大视野
从数据世界迈向大数据世界,技术的继承与创新将会并存。当Hadoop、MapReduce成为技术创新的明星,有人或许会问:“大数据会终结BI吗?”的确,新一代的分布式数据处理技术为用户带来了新的洞察力,但它们目前仍不能完全解决传统BI(商业智能)所能够解决的问题。我们看到,传统的BI工具仍被京东这样的大型互联网企业所使用,其成熟的展现层技术仍然能在满足企业大数据分析需求时发挥作用。
PPTV聚力技术部总经理金昀认为,大数据分析可以理解为BI在数据量大规模爆发后的演进成果。传统的技术手段的确很难应付数据量的爆炸式增长,但无论是“小数据”时代还是“大数据”时代,企业所面临的数据管理问题都是相同的,即发掘数据之间的内在联系,催生新的商业价值。
“未来或许会有大数据时代的BI。BI的技术思维仍会存在,虽然数据的采集、存储和分析方法全都改变了。与传统BI相比,大数据时代的BI数据集成的范围会更广,像用户行为数据、销售数据、地理位置信息、团购信息、天气信息等,都可以被集成到一起,通过新的分析与展现方法产生新的价值。它会带来更广、更深邃的洞察力。”金昀说。
企业用户数据视野的拓展同样有赖于IT与业务之间紧密协作。从想象力的激荡,到构想在现实环境的落地,注定是一段IT与业务携手而行的旅程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11