
三步走提高数据库安全防护
数据库,作为一种数据的结合体,由于它的结构性和系统性,必将成为未来企业甚至是国家最常使用的数据集合存在形式,对于它的防护,我们必须一步一个脚印,做到缜密而又细致的防护才能避免这个数据堡垒从内部崩塌。同时对于那些敏感的数据,采用具有本源防护效果的加密软件无疑是最佳的选择!信息时代,我们的身边充斥各种数据。在信息处理终端和传输、交流的互联网上,数据更是当之无愧的主角。在数据中,有一种综合体,它是数据的堡垒,同时也是个人、企业甚至是国家最依赖的数据综合体——数据库。数据库的形成让人们调用数据,处理数据、分类数据变得更容易。而数据库的重要性也使得它的防护变得异常重要。
数据泄漏的安全问题正迅速增长
据统计,发生在2012年的数据泄露事件达到了前所未有的高度,共计1428起。然而,就在三年之前,此类事件只有727起。
很显然,与以往任何时候相比,各类机构如今更容易遭遇大规模数据泄露的侵袭。原因何在?越来越多的数据以在线形式出现在越来越多的地方,从而更加容易被访问。黑客们在获取数据方面变得更加成熟与有效。与此同时,网络变得更加复杂也更加容易被渗透。为了保护数据,各个机构需要掌握更多安全知识并付出更多努力。
意图染指数据库的犯罪份子正蠢蠢欲动
对于网络犯罪分子来说,数据库(包括结构化数据)是他们梦寐以求的猎物。对于心怀不轨的人们来说,安全性不足的数据库能够让他们梦想成真。然而,遭遇数据泄露的机构面对的却是一场成本高昂的可怕的噩梦。在保护重要数据方面,很多机构并不完全了解自己掌握哪些数据、如何储存、数据动向及其使用者的情况。最近一份数据泄露调查报告显示,92% 以上记录在案的数据泄露事件都与数据库有关。
数据库本身的性能问题导致了安全防护优先级的“不被重视”
将数据库安全搁置在优先名单最下方的合理原因有很多。数据库的可用性要求非常高,因此补丁周期很长而且对于传统的 DBA (数据库管理) 安全软件不甚友好。理想的安全解决方案需要有效保护结构化数据并且不能对数据功能与可用性造成明显的影响。
而一个几乎普遍存在的问题就是:人们未能了解机密信息并对其进行合理的分类从而有效预防各类数据损失。很多 DLP(数据丢失防护)解决方案能够处理数据库中储存的结构数据格式,例如社会保险或银行账户号码。然而,健康记录或病例这样的自定义数据格式怎么办?诸如电邮、文本、PDF
与图形等非结构性敏感数据的快速增长更是造成了严峻的挑战。2011 IDC
研究表明,非结构化数据的增速超过了结构化数据并且将在未来十年内占到所有数据的 90%。此类数据在企业内部流转并且经过多种设备进行储存与访问。
数据库的监管力度问题也是一大隐患
有时候,人们很难确定敏感数据是否遭遇了危险或者流转到了何地。机密数据的拷贝份量往往超过组织所知晓的数字。数据库经常被拷贝后用于测试与研发并且添加或升级新代码。
这些数据库在哪里?它们是否打上了补丁或者经过了升级?漫不经心的安全操作可能使得人们无法有效追查此类情况。了解数据库弱点的网络犯罪分子能够利用这些恶意数据库发起网络攻击。
“任谁可以访问数据库”成了数据安全问题的症结之一
另外一个被人们忽视的数据安全问题就是数据访问——什么人可以访问数据,他们如何使用数据。如今,重要数据可供员工与“值得信任”的他人使用:合约商、供应商与合作伙伴。大家都希望可以随时在任何地方访问数据。通常,DBA (数据库管理员)为用户提供授权,而后者就能够接触到工作所需以外的更多信息。更为理想的数据安全需要采用“最少权限”原则——也就是根据角色或工作职能需要来授予权限。
专家支招 三步走提高数据库安全防护
【发现】对于 DLP(数据丢失防护)来说,首先,数据发现至关重要。这其中包括确定文件所有人以及他们掌握文件的原因和使用方法。确认文件使用者以及文件是否得到保护的最佳方法就是扫描服务器、数据库、硬盘与网络设备。这样便可以知道数据在网络中的生成、储存、访问、更改与传送的方法,进而探测、识别、分析与了解静态数据与动态数据的情况。
【分级】其次,必须通过政策与控制找到储存在资料库中的静态数据并且对其进行分级与保护。高级数据库探查软件能够搜索整个网络从而找到数据生产情况与恶意数据库并扫描资料库。人们应该定期进行网络扫描,从而查找那些违反政策规定的行为并且发送警报以立刻进行纠正。能够对数据进行索引与分级的解决方案使得人们可以更加轻松地去询问与了解敏感数据及其使用情况、所有者、储存地与扩增情况。此外,数据库中的数据应该得到加密与备份。
【防护】我们还需要明白那些在网络中流转的动态数据也是有效数据探查的重要内容。捕捉技术能够收集与记录数周、甚至数月的网络流量。它们分析数据类型从而确定标准数据与专有数据,然后制定有效的政策以防止和控制数据内容流传到网络之外。如果想要防止内部人士恶意破坏网络,那么就必须要对数据进行加密。当设备损失或失窃时,还要防止他人进行未授权访问。
对于数据库或者数据本身来说,各种防护策略最好的选择就是加密。因为加密的特殊性,数据即使由于种种原因泄漏,加密防护依然存在,真实内容也不会暴露,可以说是一种彻底、长久的防护之法。在现今多样的安全环境和防护需求的背景下,使用国际先进的多模加密技术无疑是最好的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18