
SPSS正态分布以及方差齐性检验以及Wilcox检验
方差分析、t-test等基本上都是我们常用的工具,但是还是有不少小伙伴,特别是刚入坑的小伙伴分不清楚,今天是说几句,老司机也可以收藏给以后的师弟师妹。第二篇关于三种t检验的适用情况说明(单一样本t检验,配对样本t检验,独立样本t检验),是我几天前看到采集而来,一并放到这里做个简单的汇总。
t检验要求数据正态分布以及方差齐性。一般来说一些常见的表型数据符合正态分布以及方差齐性的要求。但对于其他类型的数据,就不一定满足这两点了。所以在进行t检验之前,首先要进行数据的正态检验以及方差齐性检验。在SPSS中的具体操作如下:
输入的数据格式如下:
1、在菜单栏选择“分析”-“描述统计”-“探索”,如下图。
2、将分组信息group添加到“因子列表”,其他数据添加到“因变量列表”,如下图。
3、设置“统计”选项卡,所有勾选的都选上即可,如下图。
4、设置“图(T)”选项卡,设置如下图,按下图设置之后点击“继续”。
5、完成上述设置之后,点击“确定即可”,稍微等待即可出现结果。
6、这一步会出来很多统计结果,下面只介绍我们关心的正态分布检验和方差齐性检验,正态分布检验结果如下表。
从上表我们看出,显著性(p值)远小于0.001,即显著,则能够拒绝他们服从正态分布的假设。即该组数据不符合正态分析,也就不能使用t检验和方差分析(ANOVA),不管此时方差是否齐性均不能使用上述两种检验。
其实数据是否符合正态分布我们在正方图或Q-Q图上基本上也能看出,如下图,均不是正态分布。数据正态分布时,数据点基本沿直线两侧分布。
7、如果数据符合符合正态分布下面就要进行方差齐性检验,结果如下图。
从上表我们可以看到其显著性(P<0.001)非常小,这说明我们要拒绝他们总体方差相等的假设,即此时方差不齐,不能使用t检验以及方差分析。
那么此时应该使用什么统计方法呢,一般时使用Mann-Whitney U 秩和检验(Wilcox检验),或者Kruskal-Wallis检验。两组数据比较使用Wilcox检验,而多组数据比较使用Kruskal-Wallis检验。切记需要满足的条件是:在进行多个群组之间比较时,因为群组不满足正态分布而不能使用ANOVA多比较,那么你可以使用Kruskal-Wallis检验,当只有两组时,使用基于两样本的Wilcox检验。
那么在SPSS里该如何进行Kruskal-Wallis检验和Wilcox检验分析呢?此部分暂时只说Wilcox检验分析,其实Kruskal-Wallis检验在SPSS里操作也是类似的,只不过Kruskal-Wallis检验适用于多重比较。分析入口如下。
点击"确定"之后,接下来会弹出一个设置页面,如下图,该页面包含3个子页面即“目标”,“字段”,“设置”。其中目标这个可以保持默认设置,字段以及设置的页面如下。
按照上述页面设置之后,点击运行即可。最后结果如下图所示。
这是输出的主要结果,零假设是“基因表达水平的分布在两组之间相同”,除root_z13之外,P<0.05,故拒绝原假设,认为基因的表达水平在两组之间有统计学差异。而root_z13则没有显著的统计学差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29