京公网安备 11010802034615号
经营许可证编号:京B2-20210330
决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法。
每次划分数据集的特征都有很多,那么我们怎么来选择到底根据哪一个特征划分数据集呢?这里我们需要引入信息增益和信息熵的概念。
一、信息增益
划分数据集的原则是:将无序的数据变的有序。在划分数据集之前之后信息发生的变化称为信息增益。知道如何计算信息增益,我们就可以计算根据每个特征划分数据集获得的信息增益,选择信息增益最高的特征就是最好的选择。首先我们先来明确一下信息的定义:符号xi的信息定义为 l(xi)=-log2 p(xi),p(xi)为选择该类的概率。那么信息源的熵H=-∑p(xi)·log2 p(xi)。根据这个公式我们下面编写代码计算香农熵
def calcShannonEnt(dataSet):
NumEntries = len(dataSet)
labelsCount = {}
for i in dataSet:
currentlabel = i[-1]
if currentlabel not in labelsCount.keys():
labelsCount[currentlabel]=0
labelsCount[currentlabel]+=1
ShannonEnt = 0.0
for key in labelsCount:
prob = labelsCount[key]/NumEntries
ShannonEnt -= prob*log(prob,2)
return ShannonEnt
上面的自定义函数我们需要在之前导入log方法,from math import log。 我们可以先用一个简单的例子来测试一下
def createdataSet():
#dataSet = [['1','1','yes'],['1','0','no'],['0','1','no'],['0','0','no']]
dataSet = [[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,0,'no']]
labels = ['no surfacing','flippers']
return dataSet,labels
这里的熵为0.811,当我们增加数据的类别时,熵会增加。这里更改后的数据集的类别有三种‘yes'、‘no'、‘maybe',也就是说数据越混乱,熵就越大。
分类算法出了需要计算信息熵,还需要划分数据集。决策树算法中我们对根据每个特征划分的数据集计算一次熵,然后判断按照哪个特征划分是最好的划分方式。
axis表示划分数据集的特征,value表示特征的返回值。这里需要注意extend方法和append方法的区别。举例来说明这个区别
下面我们测试一下划分数据集函数的结果:
axis=0,value=1,按myDat数据集的第0个特征向量是否等于1进行划分。
接下来我们将遍历整个数据集,对每个划分的数据集计算香农熵,找到最好的特征划分方式
信息增益是熵的减少或数据无序度的减少。最后比较所有特征中的信息增益,返回最好特征划分的索引。函数测试结果为
接下来开始递归构建决策树,我们需要在构建前计算列的数目,查看算法是否使用了所有的属性。这个函数跟跟第二章的calssify0采用同样的方法
def majorityCnt(classlist):
ClassCount = {}
for vote in classlist:
if vote not in ClassCount.keys():
ClassCount[vote]=0
ClassCount[vote]+=1
sortedClassCount = sorted(ClassCount.items(),key = operator.itemgetter(1),reverse = True)
return sortedClassCount[0][0]
def createTrees(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0])==1:
return majorityCnt(classList)
bestfeature = choosebestfeatureToSplit(dataSet)
bestfeatureLabel = labels[bestfeature]
myTree = {bestfeatureLabel:{}}
del(labels[bestfeature])
featValue = [example[bestfeature] for example in dataSet]
uniqueValue = set(featValue)
for value in uniqueValue:
subLabels = labels[:]
myTree[bestfeatureLabel][value] = createTrees(splitDataSet(dataSet,bestfeature,value),subLabels)
return myTree
最终决策树得到的结果如下:
有了如上的结果,我们看起来并不直观,所以我们接下来用matplotlib注解绘制树形图。matplotlib提供了一个注解工具annotations,它可以在数据图形上添加文本注释。我们先来测试一下这个注解工具的使用。
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle = 'sawtooth',fc = '0.8')
leafNode = dict(boxstyle = 'sawtooth',fc = '0.8')
arrow_args = dict(arrowstyle = '<-')
def plotNode(nodeTxt,centerPt,parentPt,nodeType):
createPlot.ax1.annotate(nodeTxt,xy = parentPt,xycoords = 'axes fraction',\
xytext = centerPt,textcoords = 'axes fraction',\
va = 'center',ha = 'center',bbox = nodeType,\
arrowprops = arrow_args)
def createPlot():
fig = plt.figure(1,facecolor = 'white')
fig.clf()
createPlot.ax1 = plt.subplot(111,frameon = False)
plotNode('test1',(0.5,0.1),(0.1,0.5),decisionNode)
plotNode('test2',(0.8,0.1),(0.3,0.8),leafNode)
plt.show()
测试过这个小例子之后我们就要开始构建注解树了。虽然有xy坐标,但在如何放置树节点的时候我们会遇到一些麻烦。所以我们需要知道有多少个叶节点,树的深度有多少层。下面的两个函数就是为了得到叶节点数目和树的深度,两个函数有相同的结构,从第一个关键字开始遍历所有的子节点,使用type()函数判断子节点是否为字典类型,若为字典类型,则可以认为该子节点是一个判断节点,然后递归调用函数getNumleafs(),使得函数遍历整棵树,并返回叶子节点数。第2个函数getTreeDepth()计算遍历过程中遇到判断节点的个数。该函数的终止条件是叶子节点,一旦到达叶子节点,则从递归调用中返回,并将计算树深度的变量加一
def getNumleafs(myTree):
numLeafs=0
key_sorted= sorted(myTree.keys())
firstStr = key_sorted[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
numLeafs+=getNumleafs(secondDict[key])
else:
numLeafs+=1
return numLeafs
def getTreeDepth(myTree):
maxdepth=0
key_sorted= sorted(myTree.keys())
firstStr = key_sorted[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
thedepth=1+getTreeDepth(secondDict[key])
else:
thedepth=1
if thedepth>maxdepth:
maxdepth=thedepth
return maxdepth
测试结果如下
我们先给出最终的决策树图来验证上述结果的正确性
可以看出树的深度确实是有两层,叶节点的数目是3。接下来我们给出绘制决策树图的关键函数,结果就得到上图中决策树。
def plotMidText(cntrPt,parentPt,txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0+cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0+cntrPt[1]
createPlot.ax1.text(xMid,yMid,txtString)
def plotTree(myTree,parentPt,nodeTxt):
numLeafs = getNumleafs(myTree)
depth = getTreeDepth(myTree)
key_sorted= sorted(myTree.keys())
firstStr = key_sorted[0]
cntrPt = (plotTree.xOff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.yOff)
plotMidText(cntrPt,parentPt,nodeTxt)
plotNode(firstStr,cntrPt,parentPt,decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff -= 1.0/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
plotTree(secondDict[key],cntrPt,str(key))
else:
plotTree.xOff+=1.0/plotTree.totalW
plotNode(secondDict[key],(plotTree.xOff,plotTree.yOff),cntrPt,leafNode)
plotMidText((plotTree.xOff,plotTree.yOff),cntrPt,str(key))
plotTree.yOff+=1.0/plotTree.totalD
def createPlot(inTree):
fig = plt.figure(1,facecolor = 'white')
fig.clf()
axprops = dict(xticks = [],yticks = [])
createPlot.ax1 = plt.subplot(111,frameon = False,**axprops)
plotTree.totalW = float(getNumleafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5/ plotTree.totalW; plotTree.yOff = 1.0
plotTree(inTree,(0.5,1.0),'')
plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27