
不到两年,他是如何从外行进阶到参与Google人工智能项目
这篇访谈稿采访到成文用时约三周的时间,虽然对今天的这位嘉宾认识不深,但是你会发现从他的字里行间满满的谦恭,对知识的渴求,和自己进步的鞭策。
榜眼初相识
吴*天
2017年12月
CDALevel II大数据分析榜眼
北理工数学系毕业,是不折不扣的理工科学生,毕业以后也像很多人一样,面临着就业的选择。尤其是在选择数据作为自己从业之路的阶段,也曾有着困惑、疑虑、顿悟和坚持。
数据分析之路的风雨兼程
当问到他在选择数据分析有哪些记忆深刻的工作经历时,他若有所思的回忆到:
说到记忆深刻的工作经历,其实从选择数据分析之路开始,就是一路的披荆斩棘,一路的风雨兼程。
从SPSS到R,从Python到Scala,从MapReduce到Spark,可以说每个阶段学习与工作,每个阶段所遭遇的困难与阻碍,以及最终的收获,都令人记忆犹新。
因此对我而言,印象深刻的并不是工作经历,而是在选择数据作为自己从业之路的那个阶段,自己的困惑、疑虑、顿悟和坚持。
因为择业对我而言不是混口饭吃,我希望自己所从事的行业能最终成为我的人生方向。
在这个过程中,CDA给了巨大的帮助。
应对工作变动的最好心态是空杯学习
交谈中我发现,他的谦逊和学习的空杯心态正是每个CDA学员,每个CDA人,甚至每个正在工作岗位奋斗的人都应当学习借鉴并且欠缺的。
在CDA毕业以后,先是在成都数联益康科技有限公司任数据分析师、大数据分析师等职,早些时候主要从事算法研发的工作,后期由于公司业务需要,工作的重心转向了分布式集群架构及分布式算法执行等相关工作。
在这家公司虽然有变动,但是也是因为这些变动让我变得更懂得学习的空杯心态,逐步让自己提升。
正是因为之前的积累,目前,很荣幸的参与到谷歌的一项人工智能项目当中,暂时处在一个学习和提升的阶段。
学习这件小事
他说,和CDA的结缘是因为学习,因求学与CDA相识,并到现在的互相信任彼此扶持。
其实我同时也是CDA数据分析师脱产班第四期学员。
如果说大学教育为我打下了一个扎实的知识基础,那么CDA课程的学习,才真正帮我奠定了一个完整的数据分析知识理论框架及方法论,这套理论框架和方法论,在我日后的各个学习和工作阶段,都给我提供了莫大的帮助。
其实参与CDA的考试,本质上是出于对CDA数据分析师品牌的认可,相信CDA考试的质量及其社会认可度。下个阶段,我想在技术上寻求进一步的突破和发展,将暂时离开大数据架构及分析这套技术框架,投身人工智能领域,而参加一场考试作为技术实力的验证与证明,最合适不过,外加基于我对CDA的了解与认可,参加CDA LEVEL II考试便是不二之选。
其实我经常会参加一些考试来借此锻炼自身技术,在这些国内的数据分析考试中,CDA的考试质量确实是最高的,在本次考试中也暴露了自身技术上的很多不足,有待后续继续提高。
学习经验和技巧
每个人都有不同的学习方法和学习技巧,但是他的学习方法听完以后,你会觉得不仅仅是逻辑在线,更重要的是学习的思路清晰,贵在坚持。
那么关于学习心得,我的想法是,大数据整个知识体系其实内容非常多,要进行系统性学习的话,除了在要有恒心和毅力之外,最重要的就是要从诸多知识内容中梳理出一条主线。
那对于大数据分析师而言,知识内容的主线应该就是算法原理及其落地实践工具的掌握,机器学习和数据挖掘算法原理是核心,有了一定的算法原理知识后,首先是学习利用菜单式操作的统计工具SPSS进行实践,然后进一步学习利用Python进行算法编程方面实践,最后则是利用spark进行算法的分布式实践,掌握不同工具,实际上最终还是围绕实践算法来逐级展开。
有了学习主线,后面就是按部就班的一部分一部分来进行学习。
2018年6月CDA认证考试官方报名途径
点击“阅读原文”报名
CDA认证考试交流分享
请添加个人微信(微信号:CDAbanzhuren),备注“CDA考试”进群。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13