
保险产业拥抱“大数据时代”
当今,数据已经渗透到每一个行业和业务领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。中国的保险(和讯放心保)销售模式正在酝酿新的变革,互联网、大数据时代的到来给金融业造成的革命性、颠覆性的变化正在发酵,对保险业数据驾驭能力提出了新的挑战,也为保险业的大发展提供了前所未有的空间和潜力。
深入挖掘大数据应用潜质
目前,大多数保险企业都已经认识到“大数据”改善决策流程和业务成效的潜能,但却不知道该如何入手,部分企业在“大数据”的时代浪潮下积极探索,成为先行者。2010年,阳光保险集团建成数据挖掘系统,这在保险行业是第一家。利用该系统,开展了许多保险大数据智慧应用的项目,获得了一些成果,同时培养出了国内保险行业的第一批数据挖掘师。
大数据应用的关键是理念。思维转变过来,数据就能被巧妙地用来激发新产品和新型服务。举一个利用与不利用数据结果相去甚远的例子:“淘宝现有一种运费保险,即淘宝买家退货时产生的退货运费原本由买家承担,如果买家购买了运费保险,退货运费由保险公司来承担。这种购买的结果是保险公司经营亏损很严重,直接导致它们不愿意再发展和扩大运费保险。”运费保险真的必然亏损吗?答案是“No”。保险公司设计一套大数据智慧应用的解决方案:“因为退货发生的概率,跟买家的习惯、卖家的习惯、商品的品种、商品的价值、淘宝的促销活动等都有关系,所以,使用以上种种数据,应用数据挖掘的方法,建立退货发生的概率模型,植入系统就可以在每一笔交易发生的时候,给出不同的保险费率,使保险费的收取,与退货发生的概率相匹配,这样运费险就不会亏损了。在此基础上,保险公司才有可能通过运费险扩大客户覆盖面。”由严重亏损到成本控制得当并获取客户,靠的就是通过分析,挖掘大数据所提供的价值,吸引客户。
大数据网络保险时代来临
大数据发展的障碍,在于数据的“流动性”和“可获取性”,而网络完美的解决了这个问题。通过网络对大数据进行收集、发布、分析、预测会使决策更为精准,释放更多数据的隐藏价值。与传统保险方式相比,网络保险具有降低保险公司和保险中介机构运营成本,拓展保险公司和保险中介机构业务范围,新型营销手段,有价值的交互式交流工具,提供较高水平的信息服务,为客户提供便捷工具,使客户享受个性化服务,降低保险公司风险,更有效地保护客户隐私以及虚拟化的交易方式等特性。
可以说,众安在线财险是将大数据与网络保险进行深度融合的例子。其产品主要从保障互联网安全运行的角度出发,为互联网用户提供网络交易安全、网络服务后续的解决方案。与之前的网销不同,众安在线所倡导的互联网保险不再是简单地将传统保险产品移植到互联网上,而是根据上网保险人群的需求以及在线的特点设计产品,为客户的网上生活提供全面保障。
从产品设计角度来说,大数据时代下的网络保险能最大程度地满足不同客户的个性化需求,网络保险能优化客户的体验,“大数据”能根据客户需求设计出真正让客户满意的产品和服务,两者结合则完全是“以客户为中心”的。
从大数据时代的网络销售优势来看,一是大数据时代保险网销具有最广泛的客户群,有最大的发展潜力。二是互联网具有信息量大、传导速度快、透明度高的特点,交易双方信息更为对称。通过建立新型的“自动式”网络服务系统,保户足不出户就可以方便快捷地从保险公司的服务系统上获取公司背景到具体保险产品的详细情况,还可以自由地选择所需要的保险公司及险种,并进行对比,能获得低价、高效服务。三是节省费用,降低成本。通过网络出售保险或提供服务,保险公司只需支付低廉的网络服务费,从而降低房租、佣金、薪资、印刷费、交通费、通讯费等成本的支出。四是数据管理方面的天然优势。保险市场专业化的深入、经营水平的提高、服务品质的提升,都要建立在对数据尤其对客户消费数据的深入挖掘和分析的基础之上。
可见,大数据时代下的网络保险有利于推动营销体制改革。多年来,我国一直以保险代理人作为保险推销体系的主体重点发展,在寿险推销方面形成了以寿险营销员为主体的寿险营销体系。但是,目前这种体制还存在较为突出的问题。因客户缺乏与保险公司的直接交流,会导致营销人员为急于获取保单而一味夸大投保的益处,隐瞒不足之处,给保险公司带来极大的道德风险,为保险业的长远发展埋下隐患。而且,保险营销人员素质良莠不齐,又给保险公司带来极大的业务风险。此外,现有营销机制还存在效率低下的弊端。
因此,在大数据时代下发展网络保险,可以快速便捷地进行信息收集、发布,完美地实现大数法则的精致应用。为公众提供低成本、高效率的保险服务。
网络保险需多项配套支持
一是财政支持。在推进保险公司的信息化进程中,政府可采取诸如信息技术方面的投资部分抵消税收,税前可以预留部分资金用于信息技术改造等一系列措施,激励和推进大数据网络保险信息化进程。
二是培育网络保险集市。网络保险集市就是在网络上提供一个场所,使客户能在这里找到大量的保险公司,方便了解各个公司的基本信息或查询各个保险公司的某一险种的有关信息,并对该险种的优劣进行对比分析,选择最佳的公司进行投保。网络保险集市不仅会给客户带来方便,同时也会扩大保险公司的影响和业务量。因此,保险公司应在保监会和保险协会的组织下,全力支持并在网络保险集市上展示自己,进一步推动我国网络保险集市的发展。
三是建设大数据中心。大数据中心需要保监会和保险行业进行战略性的顶层设计。首先是与我国标准化数据管理中心进行合作,制定出保险业数据标准化的制度。其次是通过5—10年的时间逐步完成行业数据标准化建设。同时设计出非线性能融合关系数据,并能进一步扩展的数据库。此外是设计柔性的框架和接口。通过以上步骤逐步完成我国保险业大数据中心的建设。
四是开发适合的险种。利用网络收集数据形成大数据,根据大数据精致的利用大数法则设计客户需求的产品,通过网络销售产品,并根据客户反馈进一步修正产品,实现开发与销售完美互动。
五是吸纳优秀人才和对已有员工在职教育。许多保险公司有一个规定,即无论是管理人员还是技术人员都必须完成一定的保险任务。似乎这条规定能为公司增加一点业务量,但是它无形之中就把一些优秀的保险管理人员和技术人员拒之于门外。大数据时代需要一流的管理人才和技术人才,必须破除这条不成文的规定。同时还应该重视对已有员工进行保险专业知识、外语知识和信息技术知识再教育,通过再教育提高公司员工综合素质。
六是责任与自由并举的信息管理。调查显示,66%的被调查者最关心投保后支付保费的转账安全性。消费者对于网络消费的顾虑心理主要集中在对网上交易安全和个人隐私保护的担忧上。因此,网络保险应格外注重网络安全,实现责任与自由的矛盾的和谐统一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02