
python脚本实现分析dns日志并对受访域名排行
前段时间有个需求是要求查一段时间的dns上的域名访问次数排行(top100),没办法,只好慢慢的去解析dns日志呗,正好学习了python,拿来练练手。
1.原始数据分析:
首先看下原始数据文件,即dns日志内容,下面是抽取的几条有代表性的日志,2×8.2×1.2x.1×5 这种中间的x是相应的数字被我抹去了。
13-08-30 03:11:34,229 INFO : queries: – |1×3.2×8.2x.2×8|p19.qhimg.com|default|2×8.2×1.2x.1×5;|default;|A|success|+|—w— qr aa rd ra |8061|
13-08-30 03:11:34,238 INFO : queries: – |1×3.2×8.x.9x|shu.taobao.com|default|2×8.2×1.2x.1×5;|default;|A|success|+|—w— qr aa rd ra |59034|
13-08-30 03:11:34,238 INFO : queries: – |1×3.2×8.2×7.1×2|cncjn.phn.live.baofeng.net|default|2×8.2×1.2x.17x;|default;|A|success|+|—w— qr aa rd ra |3004|
可以看出中间的日志采用的是| 分割的,shu.taobao.com 即为我们想要的数据域名,至于域名访问次数统计,则每个域名的一条记录算一次访问。由此我们可以确定一下两点:
a)采用| 作为分割符
b)第二个字段domain为目标数据,我们用作键值,即字典的key
c)domain[key]存储相应域名的访问次数
2.脚本构思:
a)我们的dns日志都是隔一段时间自动切割、压缩为gz文件,因此首先必须采用gzip.open去打开gz文件,这里需要导入gz库。
b)要求查找的是一段时间的域名排行,所以必须有得过滤一段时间,这里我采用了正则的方式去过滤,so导入re正则库。
c)排序,必须对结果进行排序,然后输出topXX的结果,由于是采用字典保存的,而字典是乱想的,所以必须有合适的办法去排序,字典的iteritems正好适用。
3.脚本编写:
明白了大致要点,脚本写起来就很easy了。
代码如下:
稍微说下脚本内容,queries.log.CMN-CQ.20130830031330.gz 为具体的一个目标文件,脚本主要是采用字典存储,以domain字段作为key,domain[key]存储访问次数。
稍后调用字典的iteritems 方法生产迭代器进行排序,最后输入top100的域名。
最后的raw_input(“enter a word to finish”) 是因为我在win7下测试的,默认执行完就一闪而过了,加入这行纯碎是为了观察结果,linux下可以删去。
这里稍微别扭的是时间的过滤采用的是正则去过滤的,所以要求输入必须是正则的方式,这点麻烦。
3.执行
说了大半天了,还是先跑下看看效果吧。
可以看出正常输出了top20的域名。
4.总结:
大致实现了相应的要求,只是很多的文件处理的不大好。例如采用正规去过滤时间段,在数据量很大的情况下会对性能有影响。同时感谢同事,最后的字典的排序方法我是抄他的,感谢个~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07