
企业必须避免的三个大数据错误
如果企业改变它对大数据的想法,大数据会改变企业的思路。这听起来有些像禅宗心印 (Zen Koan)。不过,这是获得突破性见解的关键:你的眼光必须超越思想的限制,思考和询问你希望从拥有的数据中得到什么。
尽管如此,许多机构出人意料地没有把这种新的思想应用到自己的大数据计划中,结果导致严重的计划失败。
错误的想法,也就是“大数据的错误”,有三个主要方面。如果不解决这些错误想法,这些错误将直接导致一些欠考虑的计划,不能提供有意义的商业价值。
错误1:从害怕失去机会的角度作出反应。由于害怕失去机会,许多机构仓促地实施大数据基础设施项目,以避免落后。麻省理工学院《史隆管理评论》(MIT Sloan Management Review)发表的一篇调查报告指出,大数据的迅速流行导致一些大型企业的执行委员会向管理人员发出如下指令:“我们不知道大数据是什么,但是,我们最好立即解决大数据的问题。”
这种下意识的反应已经导致出现一些无法实现的计划,如盲目地建造Hadoop(分布式计算)集群,含糊的目标是用12至24个月的时间,没有考虑如何帮助提高收入、节省成本或者提高竞争力的实际应用案例。这种仓促的决定显然会使大数据计划失败。
错误2:把重点主要放在数量方面。本文作者Attivio公司产品营销主管Mike Urbonas的同事Randy McLaughlin最近发现“大数据”这个词汇有许多竞争的定义,这些定义限制了这个词汇的实用性。例如,早些时候的定义让“大”等于“量”。这个定义是不完善的,并且仍然在坚持。许多人仍然错误地认为大数据是Hadoop的同义词。
这是一个问题,因为把重点放在量的方面将导致大错误。这是《哈佛商业评论》最近发表的一篇题为“更大的数据会导致更好的决策吗?”的博客文章提出的警告。这篇文章的作者引述长期的研究结果称,决策者经常为了提升自我或者证明现有的想法而有选择地使用和解释信息。仅仅增加数据量不会对目前常规的企业想法构成挑战。
这也许是许多企业设法利用庞大的数据量,只有少数企业真正取得成功的原因。这个问题的解决方案不是重新制定一个决策过程,而是重新制定一个机构的战略,不是把量作为主要技术重点,而是把管理多样性作为重点!
错误3:没有把重点放在信息的多样性方面。《哈佛商业评论》那篇文章的作者还指出,“大量”实际上过时了;金融服务公司几十年以来一直有大量的数据。目前真正新的东西是信息资源的多样性。这些资源将产生新的商业见识。
这篇文章指出,多样性的商业团队比单一的商业团队更有创造力;多种数据合并在一起会产生同样的好处。因此,我们不能说数量大的数据会导致更好的决策,而是把使用新技术、处理过程和技能的许多点连接起来的多样性的数据会导致更好的决策。通过一个统一信息接入平台,这些点的连接会迅速完成。
设想一下,把相关的和分析交易数据库与客户在社交媒体、网站、电子邮件、即时消息聊天和呼叫中心记录等地方发表的喜欢或不喜欢的意见组合在一起,其结果是一个对客户解决方案的真正的全方位的看法。这个客户解决方案提供新的可执行的见解,在最大限度提升客户服务、忠诚度以及成功的追加销售和交叉销售的同时减少客户流失。这是大数据多样性的业务转型的力量。
重要的是需要指出,越来越多的证据表明,开始获得真正的改变游戏规则的回报的机构认识到,这是通过管理多样化的信息实现的。例如,上述大数据调查报告指出,受访的大企业都谈到管理各种数据和集成多种来源的信息。这是企业使用大数据的重点。这包括使用非结构化数据。
因此,如果你的机构还没有探索把管理多样性数据作为大数据商业价值的主要推动因素和技术重点,你的机构现在要在竞争对手采取行动之前把这个工作摆正优先的位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13