
深入理解python中的atexit模块
atexit 模块介绍
python atexit 模块定义了一个 register 函数,用于在 python 解释器中注册一个退出函数,这个函数在解释器正常终止时自动执行,一般用来做一些资源清理的操作。 atexit 按注册的相反顺序执行这些函数; 例如注册A、B、C,在解释器终止时按顺序C,B,A运行。
Note:如果程序是非正常crash,或者通过os._exit()退出,注册的退出函数将不会被调用。
注册 退出函数
atexit.register(func, *args, **kargs)
将func作为要在终止时执行的函数。任何要传递给func的可选参数必须作为参数传递给register() 。可以多次注册相同的函数和参数。
当程序退出的时候,按先进后出的顺序调用注册的函数。如果退出函数在执行过程中抛出了异常,atexit会打印异常的信息,并继续执行下一下回调,直到所有退出函数执行完毕,它会重新抛出最后接收到的异常。
示例
通过装饰器的方式:
#!/usr/bin/env python
from atexit import register
def main():
print('Do something.')
@register
def _atexit():
print('Done.')
if __name__ == '__main__':
main()
非装饰器的方式:
#!/usr/bin/env python
from atexit import register
def main():
#pass
print('XX')
def goodbye(name, adjective):
print('Goodbye, %s, it was %s to meet you.' % (name, adjective))
register(goodbye, 'Donny', 'nice')
# or:
# register(goodbye, adjective='nice', name='Donny')
if __name__ == '__main__':
main()
删除退出函数[一般用不到]
> atexit.unregister(func)
>
从解释器关闭时运行的函数列表中删除func。 调用unregister()后,当解释器关闭时,即使它被注册了多次,func也不会被调用。如果func没有注册过的话,则unregister()什么也不会做。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22