
2018年,数据分析师该如何做好自己的职业规划?
数据分析作为最近火热的细分行业,越来越受到大家的关注。但最近和一些数据分析师沟通时,大家都对自己的未来发展感到有些困惑。除了一路从初级数据分析师做到高级,最终走向团队管理外,未来数据分析师还有哪些职业成长空间,又需要提前做哪些方面的准备呢?笔者结合自己的工作经验给出一些看法。
入门篇
入数据分析这个行业有两个方向:业务与技术,可以选一个方向入门并逐步深入。
技术方向
专注于如何提高数据采集及运算速度,如何更有效的编写统计代码。这个岗位一般适合喜爱做编程开发的同学,供职于各企业的IT部数据分析/数据产品/数据仓储组。需要数据库,分析语言,建模算法等开放方面的技能支持。近几年随着很多大公司ERP,CRM建设的完成,在BI与大数据方面投入资金加大,使得数据开发的薪资水涨船高,发展值得期待。
业务方向
专注于如何用数据分析问题,如何从提炼出策略汇报给老板。这个岗位一般在市场部/运营部/战略发展部,供职于商业分析,数据运营,战略决策等岗位。需要懂得市场营销/运营的理论,对数据技术,数据来源有一定认识,有较强的逻辑能力,还得有一些业务实战经验。业务分析更适合有一定经验积累的老鸟进阶,新人直接走业务方向,容易论为表哥表姐。但术业有专攻,两边都会有最高境界,但大部分人起步还是要有个方向的。
总结: 零基础的新人建议从技术方向入手,起薪高,容易入职。有一定工作经验的可以考虑业务方向,毕竟程序猿不是一个一辈子的工作,技术+业务才能混管理拿高薪。
向上篇(公司层面)
技能上成为专家,职能上成为部门领导
成为各业务部门的好搭档&助攻
怎么做?
首先本身自己技术过硬就不说了,还要具备管理能力,带好团队,这是你披荆斩棘的好战友。核心——项目制,高层沟通,业务部门沟通,创造新数据产品!
手上有一堆项目成果是成为数据分析部门leader的必备条件,因为有独立项目经验,述职时才有谈资,跳槽面试时才能在脱颖而出。
把自己的工作产品化,从常规工作中打造出产品。数据产品是数据工作价值的直观体现,能被业务拿来用,能受到业务部门认同。在积极配和其他部门参与到重大的项目,提供产品/工具(而不是虚头巴脑的人肉报表)支持,能很好的显示成绩。
和高层沟通,从上至下,推动数据分析工作并得到老板重视,不过这往往是最难的。这里提供一些推进的建议:多关注企业的痛点,对于那些高品、刚需的痛点,首先要去满足;尝试用数据分析的过程去优化管理决策学会告诉老板数据分析带给企业的效益;细节着手,潜移默化地培养领导和老板的数据化意识。
向上篇(行业层面)
站在行业层面,还是有很多机遇的。随着近几年企业对数据管理意识的重视,一些传统企业也在推动数据化转型,去一些有价值有潜力的传统行业做数据工作也不失为好机会。
又或者你自己成为这个行业的推动者,成为咨询顾问,帮助企业做数据治理,辅助并指导企业的数字化转型,提供知识体系搭建的过程。进而也可以成为职业培训师,为企业提供从体系化解决方案到数据人才培养的综合服务,两者都是高薪的好渠道。
其他想得更大一些,可以混管理圈,尤其是传统行业,期待遇到认同数据价值的伯乐老板,邀请你当COO吧。
最后,大多数企业并没有给数据人设置特定的岗位和职业晋升通道,有些岗位有些价值需要自己开拓,不给自己设限。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11