京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		2018年,数据分析师该如何做好自己的职业规划?
数据分析作为最近火热的细分行业,越来越受到大家的关注。但最近和一些数据分析师沟通时,大家都对自己的未来发展感到有些困惑。除了一路从初级数据分析师做到高级,最终走向团队管理外,未来数据分析师还有哪些职业成长空间,又需要提前做哪些方面的准备呢?笔者结合自己的工作经验给出一些看法。
	
入门篇
	
入数据分析这个行业有两个方向:业务与技术,可以选一个方向入门并逐步深入。
	
技术方向
专注于如何提高数据采集及运算速度,如何更有效的编写统计代码。这个岗位一般适合喜爱做编程开发的同学,供职于各企业的IT部数据分析/数据产品/数据仓储组。需要数据库,分析语言,建模算法等开放方面的技能支持。近几年随着很多大公司ERP,CRM建设的完成,在BI与大数据方面投入资金加大,使得数据开发的薪资水涨船高,发展值得期待。
	
业务方向
专注于如何用数据分析问题,如何从提炼出策略汇报给老板。这个岗位一般在市场部/运营部/战略发展部,供职于商业分析,数据运营,战略决策等岗位。需要懂得市场营销/运营的理论,对数据技术,数据来源有一定认识,有较强的逻辑能力,还得有一些业务实战经验。业务分析更适合有一定经验积累的老鸟进阶,新人直接走业务方向,容易论为表哥表姐。但术业有专攻,两边都会有最高境界,但大部分人起步还是要有个方向的。
	
总结: 零基础的新人建议从技术方向入手,起薪高,容易入职。有一定工作经验的可以考虑业务方向,毕竟程序猿不是一个一辈子的工作,技术+业务才能混管理拿高薪。
	
向上篇(公司层面)
技能上成为专家,职能上成为部门领导
成为各业务部门的好搭档&助攻
	
怎么做?
首先本身自己技术过硬就不说了,还要具备管理能力,带好团队,这是你披荆斩棘的好战友。核心——项目制,高层沟通,业务部门沟通,创造新数据产品!
	
手上有一堆项目成果是成为数据分析部门leader的必备条件,因为有独立项目经验,述职时才有谈资,跳槽面试时才能在脱颖而出。
	
把自己的工作产品化,从常规工作中打造出产品。数据产品是数据工作价值的直观体现,能被业务拿来用,能受到业务部门认同。在积极配和其他部门参与到重大的项目,提供产品/工具(而不是虚头巴脑的人肉报表)支持,能很好的显示成绩。
	
和高层沟通,从上至下,推动数据分析工作并得到老板重视,不过这往往是最难的。这里提供一些推进的建议:多关注企业的痛点,对于那些高品、刚需的痛点,首先要去满足;尝试用数据分析的过程去优化管理决策学会告诉老板数据分析带给企业的效益;细节着手,潜移默化地培养领导和老板的数据化意识。
向上篇(行业层面)
	
站在行业层面,还是有很多机遇的。随着近几年企业对数据管理意识的重视,一些传统企业也在推动数据化转型,去一些有价值有潜力的传统行业做数据工作也不失为好机会。
	
又或者你自己成为这个行业的推动者,成为咨询顾问,帮助企业做数据治理,辅助并指导企业的数字化转型,提供知识体系搭建的过程。进而也可以成为职业培训师,为企业提供从体系化解决方案到数据人才培养的综合服务,两者都是高薪的好渠道。
	
其他想得更大一些,可以混管理圈,尤其是传统行业,期待遇到认同数据价值的伯乐老板,邀请你当COO吧。
最后,大多数企业并没有给数据人设置特定的岗位和职业晋升通道,有些岗位有些价值需要自己开拓,不给自己设限。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28