京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈python类属性的访问、设置和删除方法
下面小编就为大家带来一篇浅谈python类属性的访问、设置和删除方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。
类属性和对象属性
我们把定义在类中的属性称为类属性,该类的所有对象共享类属性,类属性具有继承性,可以为类动态地添加类属性。
对象在创建完成后还可以为它添加额外的属性,我们把这部分属性称为对象属性,对象属性仅属于该对象,不具有继承性。
类属性和对象属性都会被包含在dir()中,而vars()是仅包含对象属性。vars()跟__dict__是等同的。
类属性和对象属性可类比于Java中的static成员和非static成员,只不python中的类属性和对象属性都是可以动态添加(和删除)的。
class A(object):
name='orisun'
def __init__(self):
self.age=10
class B(A):
city='bei jing'
def __init__(self):
self.tempurature=20
if __name__ == '__main__':
a=A()
print dir(A)
print dir(a)
print a.__dict__
print vars(a)
print
b=B()
print dir(B)
print dir(b)
print b.__dict__
print vars(b)
输出
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name']
{'age': 10}
{'age': 10}
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'city', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'city', 'name', 'tempurature']
{'tempurature': 20}
{'tempurature': 20}
动态地为类添加类属性后,该类的所有对象也都添加了该属性(即使是动态添加类属性之前创建的对象)。通过实例修改属性,并不会影响其他实例的同名属性和类上的同名属性。
class A(object):
name='orisun'
def __init__(self):
self.age=10
if __name__ == '__main__':
a=A()
print dir(a)
A.city='BeiJing' #动态添加类属性,会反应到所有对象上
b=A()
A.name='zcy' #动态修改类属性,会反应到所有对象上
print dir(b)
print dir(a)
print a.name
b.name='tom' #通过实例修改属性,并不会影响其他实例的同名属性和类上的同名属性
print a.name
print A.name
print b.name
输出
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'city', 'name']
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'city', 'name']
zcy
zcy
zcy
tom
下文中讨论的全部是类属性,不涉及对象属性。
对属性的访问、设置和删除又分为2种情况:
1.通过对象(实例)访问、设置和删除属性,即obj.attr、obj.attr=val、del obj.attr
2.通过类访问、设置和删除属性,即Cls.attr、Cls.attr=val、del Cls.attr
本文将针对这2种情况分别讨论。
Descriptor
一个Descriptor是指实现了__get__的类,实现__set__和__delete__是可选的。同时实现了__get__和__set__则称为Data Descriptor,如果只实现了__get__则称为Non-data Descriptor。
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,obj,val):
pass
def __delete__(self,obj):
pass
先给一个Descriptor的示例,__get__、__set__、__delete__的作用后文再细讲。
通过实例访问属性
__getattribute__、__getattr__、__get__和__dict__[attr]都是跟属性访问相关的方法,它们的优先级:
1.当类中定义了__getattribute__方法时,则调用__getattribute__。
2.如果访问的属性存在,且
2.1 属性是个Descriptor,是调用这个属性的__get__
2.2 属性不是Descriptor,则调用__dict__[attr]
3.如果类中没有定义该属性,则调用__getattr__
4.否则,抛出异常AttributeError
验证4
class A(object):
pass
if __name__ == '__main__':
a=A()
print a.d
输出:
AttributeError: 'A' object has no attribute 'd'
验证3
class A(object):
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
d not found in A object
验证2.1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
Descriptor in A
__getattr__并没有被调用。
验证2.2
class A(object):
d=10
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
print a.d
输出:
__getattr__并没有被调用。
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
def __getattribute__(self,name):
return '__getattribute__ '
def __getattr__(self,name):
return name+" not found in "+self.__class__.__name__+" object"
if __name__ == '__main__':
a=A()
输出:
__getattribute__
__get__和__getattr__并没有被调用。
通过实例设置属性
跟属性设置相关的方法有3个:__setattr__、__set__和__dict__[attr]=val。它们的优先级跟get正好反过来:
1.如果类中定义了__setattr__方法,则直接调用__setattr__
2.如果赋值的属性是个Descriptor,且
2.1 该Descriptor中定义了__set__,则直接调用__set__
2.2 该Descriptor中没有定义__set__,则调用__dict__[attr]=val
3.如果赋值的属性不是Descriptor,则直接调用__dict__[attr]=val
4.如果该属性不存在,则动态地添加该属性,然后调用__dict__[attr]=val进行赋值
验证4
class A(object):
pass
if __name__ == '__main__':
a=A()
a.d='hello'
print a.d
输出:
hello
验证3
class A(object):
d=10
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出:
验证2.2
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出:
验证2.1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,instance,value):
pass
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出
Descriptor in A
因为代码“a.d=30”调用了__set__,而__set__又什么都没做,所以属性d还是Descriptor对象(而非30),那么在执行"print a.d"时自然就调到了__get__
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __set__(self,instance,value):
print '__set__'
class A(object):
d=Descriptor()
def __setattr__(self,name,value):
print '__setattr__'
if __name__ == '__main__':
a=A()
a.d=30
print a.d
输出
__setattr__
Descriptor in A
调用了__setattr__,而__set__并没有被调到。
通过实例删除属性
调用del instance.attr进行属性删除时可能会调到__delattr__或__delete__,它们的优先级跟set雷同。
1.如果类中定义了__delattr__方法,则直接调用__delattr__
2.如果赋值的属性是个Descriptor,且该Descriptor中定义了__delete__,则直接调用__delete__
3.如果赋值的属性是个Descriptor,且该Descriptor中没有定义__delete__,则会报异常AttributeError:属性是只读的
4.如果赋值的属性不是Descriptor,也会报异常AttributeError:属性是只读的
5.如果该属性不存在,则报异常AttributeError
验证5
class A(object):
pass
if __name__ == '__main__':
a=A()
del a.d
输出
AttributeError: 'A' object has no attribute 'd'
验证4
class A(object):
d=10
if __name__ == '__main__':
a=A()
del a.d
输出
?
1
AttributeError: 'A' object attribute 'd' is read-only
验证3
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
del a.d
输出
AttributeError: 'A' object attribute 'd' is read-only
验证2
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __delete__(self,instance):
print '__delete__'
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
del a.d
输出
__delete__
验证1
class Descriptor(object):
def __get__(self,instance,owner):
return 'Descriptor in '+owner.__name__
def __delete__(self,instance):
print '__delete__'
class A(object):
d=Descriptor()
def __delattr__(self,name):
print '__delattr__'
if __name__ == '__main__':
a=A()
del a.d
输出
__delattr__
__delete__并没有被调用。
__get__ __set__ __delete__参数说明
class Descriptor(object):
def __get__(self,obj,owner):
return '__get__',self,obj,owner
def __set__(self,obj,val):
print '__set__',self,obj,val
def __delete__(self,obj):
print '__delete__',self,obj
class A(object):
d=Descriptor()
if __name__ == '__main__':
a=A()
print a.d
a.d=3
del a.d
输出
('__get__', <__main__.Descriptor object at 0x100481c10>, <__main__.A object at 0x1004a0fd0>, <class '__main__.A'>)
__set__ <__main__.Descriptor object at 0x100481c10> <__main__.A object at 0x1004a0fd0> 3
__delete__ <__main__.Descriptor object at 0x100481c10> <__main__.A object at 0x1004a0fd0>
可见,3个方法参数中的obj是Descriptor属性所在的对象,而owner参数(__get__中的owner参数)是该对象所属的类。
在上面的讨论中我们是通过实例操作属性,如果你作一下对应转换:"实例转换到类,类转换到MetaClass",那就是通过类操作属性的规则。这种对应转换也是容易理解的,应该类是用于创建对象的,而MetaClass是用于创建类的。
class MetaClass(object):
pass
class A(object):
__metaclass__=MetaClass
通过类访问属性
通过A.attr访问属性的规则为:
1.如果MetaClass中有__getattribute__,则直接返回该__getattribute__的结果。
2.如果attr是个Descriptor,则直接返回Descriptor的__get__的结果。
3.如果attr是通过属性,则直接返回attr的值
4.如果类中没有attr,且MetaClass中定义了__getattr__,则调用MetaClass中的__getattr__
5.如果类中没有attr,且MetaClass中没有定义__getattr__,则抛出异常AttributeError
通过类设置属性
通过A.attr=val给属性赋值时:
1.如果MetaClass中定义了__setattr__,则执行该__setattr__
2.如果该属性是Descriptor,且定义了__set__,则执行Descriptor的__set__
3.如果是普通属性或None-data Descriptor,则直接令attr=val
4.如果属性不存在,则动态给类添加该属性,然后进行赋值
通过类删除属性
通过del A.attr删除属性时:
1.如果MetaClass中定义了__delattr__,则执行该__delattr__
2.如果该属性是Descriptor,且定义了__delete__,则执行Descriptor的__delete__
3.如果是普通属性,或虽是Descriptor但是没有定义__delete__,则直接从A.__dict__中删除该属性
4.如果属性不存在,则抛出异常AttributeError
以上这篇浅谈python类属性的访问、设置和删除方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11