
谷歌教你学 AI-第五讲模型可视化
Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。今天让我们来看到第五讲模型可视化。
观看更多国外公开课,点击"阅读原文"
回顾之前内容:
谷歌教你学 AI -第一讲机器学习是什么?
谷歌教你学 AI -第二讲机器学习的7个步骤
谷歌教你学 AI -第三讲简单易懂的估算器
谷歌教你学 AI -第四讲部署预测模型
附有中文字幕的视频如下:
AI Adventures--第五讲模型可视化
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
在本期的AI Adventures中,让我们一起了解如何使用TensorBoard进行模型可视化以及调试问题!
当你知道问题所在时,调试问题就容易得多。 但是随着在复杂的模型中输入训练数据,情况则会变得复杂起来。幸运的是,TensorBoard让这变得简单。
与传统编程不同,机器学习中通常有很多难预测的因素。数据的质量,模型的细微差别,需要选择的众多参数,这些都会影响到训练过程的成败。
如果有办法能够在训练过程中跟踪这些指标,并同时观察我们创建的模型结构,那么这将让我们能够调整模型并调试所看到的问题。
如今,这个抽象过程可能很难进行可视化,但幸运的是,TensorFlow有内置的解决方案!
TensorBoard
让我们看到TensorBoard,TensorFlow的内置可视化工具,这能让你完成各种事情,从观察模型结构到查看培训进度等等。
TensorFlow用到了当中计算图的理念。
这意味着,不是在传统意义上添加两个数字,而是构建一个添加操作符,并将添加的值一起作为输入。
所以当我们想到用TensorFlow训练模型时,它实际上是把所有内容作为“图表”的一部分来执行。 TensorBoard将这些模型可视化,从而你可以看到它们的样子,更重要的是,确保你已按照自己的需求连接了所有部分。
模型图可视化
下面是一个比较复杂的例子,用TensorFlow把模型图进行可视化。
TensorBoard能让我们进行缩放,平移和展开元素从而查看更多细节。这意味着我们可以在不同抽象层查看模型,这能减少视觉的复杂程度。
但是,TensorBoard不仅仅能够显示模型结构。它还可以用图表很好地绘制指标的进展。
通常,我们会绘制正确率,损失,交叉熵等等。 取决不同模型,重要的指标也不同。TensorFlow的估算器中有很多预先配置在TensorBoard中的值,所以这是一个不错的开始。
TensorBoard可以显示各种信息,包括直方图、分布、嵌入。以及模型中的音频,图片和文本数据等。这些将在之后的视频中讲到。
线性模型
我们看到下一个例子,在TensorBoard中用到我们一直在使用的线性模型。 首先我们启动TensorBoard,并指向保存了模型结构和检查点文件的目录,接着运行:
tensorboard --logdir=”/tmp/iris_model/”
这将在端口6006启动本地服务器。是的,这拼写为GOOG(即谷歌)。转到本地主机:6006,接着看到本地机器上的TensorBoard。
我们可以看到一些标量指标是默认提供的,以及线性分类器。 我们也可以展开和放大任意图表。
可以通过双击缩小。 你可以看到我们的训练进展得很好,损失在随着时间减少。 还可以确定的是,训练还没有完成,因为及时在训练尾声,损失仍然按一定速度下降。这也提示我们,也许要加长训练过程,从而充分利用该模型。
图表标签
现在让我们看到图表标签。 注意,表面上的图表非常简单。
我们可以通过单击加号展开每个块,从而查看更多信息。 例如,如果展开“线性”块,我们会看到它由多个子组件组成。 我们可以通过放大和缩小,点击并拖动来进行平移。
还要注意,我们给特征列命名为“flower_features”显示为命名的图表组件。
这可以帮助调试和识别图表的连接方式。 TensorFlow的大部分操作都可以命名,因此这是辨明模型的的好方法。
本期我们了解到,将模型和重要的训练指标进行可视化,机器学习会变得更轻松、更有趣。
TensorBoard就能让你轻松做到这点,更好的是它就内置于TensorFlow当中。
下次当你需要对机器学习进行可视化,可以试着用用TensorBoard,揭示背后的原理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27