谷歌教你学 AI-第四讲部署预测模型
Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。
观看更多国外公开课,点击"阅读原文"
之前我们更新了前三讲,关于机器学习的概念和具体步骤。后台收到的反馈十分热烈,今天让我们继续更新:第四讲部署预测模型。
回顾之前内容:
谷歌教你学 AI -第一讲机器学习是什么?
谷歌教你学 AI -第二讲机器学习的7个步骤
谷歌教你学 AI-第三讲简单易懂的估算器
主讲人还是来自Google Cloud的开发人员,华裔小哥Yufeng Guo。让我们在学习AI知识的同时来提高英语吧。
CDA字幕组目前在对该系列视频进行汉化,之后将继续连载,欢迎关注和支持~
附有中文字幕的视频如下:
AI Adventures--第四讲部署预测模型
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
一旦我们有了训练好的机器学习模型,那么该如何进行预测呢? 敬请收看本期AI Adventures !
谷歌的Cloud Machine Learning Engine能够让你为TensorFlow模型创建预测服务,且不需要任何操作。通过从训练的模型转换为部署的、自动扩展的预测服务,我们可以用更多时间来处理数据。
进行预测:最后一步
我们收集了数据,最终完成了一个合适的模型并验证了它的性能。我们现在终于准备好进入最后阶段:进行预测。
在接受提供预测服务的挑战时,我们希望部署一个专门为服务而构建的模型。特别是一个快速、轻量级的模型,而且是静态的,因为我们不希望在提供服务时出现更新。
此外,我们希望预测服务器能够按需扩展,这能够解决更复杂的问题。
输出TensorFlow模型
事实证明,TensorFlow有一个内置函数,能够在提供预测服务时生成优化的模型。并且能够进行需要的调整,这节省了大量的工作。
这个函数叫做 export_savedmodel(),当你对训练模型的性能满意时,我们可以直接在分类器对象上运行。
这将获取模型的快照,并导出可以在其他地方使用的文件。随着模型的改进,你可以继续得出更新的模型,从而不断提供模型的多个版本。
导出的文件由一个文件和一个文件夹组成。其中文件是 saved_model.pb,它定义了模型结构。变量文件夹包含两个文件,在我们的模型中提供训练权重。
生产中提供模型
一旦你导出模型就可以在提供到生产中了。这里有两个主要的选择: 使用TensorFlow Serving,或者Cloud Machine Learning Engine来提供预测服务。
TensorFlow Serving属于TensorFlow,发布在GitHub上。如果你喜欢对开发环境设施进行配置,并且按需求进行扩展的话,这是不错的选择。
然而,今天我们将主要关注Cloud Machine Learning Engine的预测服务,尽管这两者有相似的文件接口。
Cloud Machine Learning Engine能够让你用导出的TensorFlow模型,并将其转换为预测服务,当中内置API端点且自动扩展,并将达到零(即当没有人请求预测时没有计算机会改变)。
同时它还包含功能丰富的命令行工具、API和UI,因此我们可以根据喜好以不同的方式进行交互。
部署新的预测模型
下面让我们看看如何针对上期分辨鸢尾花的例子,使用Cloud Machine Learning Engine的预测服务。
输出和上传
首先在训练的分类器上运行 export_savedmodel() 。这将生成一个导出模型,我们可以用于预测服务。
接下来,我们要将文件上传到谷歌云存储。当创建新的模型版本时,Cloud machine learning engine将从云存储中读取。
在创建bucket时,一定要选择区域存储类,以确保计算和存储在同一区域。
创建新的模型
在云机器学习UI中,我们可以创建一个新的模型,这实际上是对所有发布版本的封装。版本保存了单个导出模型,而模型抽象帮助将进入的流量导入选择的适当版本。
以下是模型列表视图,在这里我们创建一个新的模型。
创建模型需要给其命名,我们将其命名为iris_model。
创建新版本
接下来,我们将创建一个版本,通过为这个特定的模型版本命名,并将其指向存有导出文件的云存储目录。
就这样,我们创建了模型! 整个过程只需要将服务指向导出模型,并给它命名。
为什么整个过程这么简单呢?
因为服务处理了设置和保护端点的所有操作。此外,我们不需要编写代码,根据需求进行扩展。因为在云端,这种灵活性意味着当需求很低时,不需要支付未使用的计算。
通过为鸢尾花模型建立不需要任何操作的预测服务,我们可以在几分钟内将训练的模型转化为部署的、可自动扩展的预测服务,这意味着我们有更多的时间来处理数据!
欢迎收看本期的AI Adventures。别忘了,当你需要在生产中扩展机器学习服务时,Cloud Machine Learning Engine是不错的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27