京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.准备数据
[plain] view plain copy
> install.packages("tree")
> library(tree)
> library(ISLR)
> attach(Carseats)
> High=ifelse(Sales<=8,"No","Yes") //set high values by sales data to calssify
> Carseats=data.frame(Carseats,High) //include the high data into the data source
> fix(Carseats)
2.生成决策树
[plain] view plain copy
> tree.carseats=tree(High~.-Sales,Carseats)
> summary(tree.carseats)
[plain] view plain copy
//output training error is 9%
Classification tree:
tree(formula = High ~ . - Sales, data = Carseats)
Variables actually used in tree construction:
[1] "ShelveLoc" "Price" "Income" "CompPrice" "Population"
[6] "Advertising" "Age" "US"
Number of terminal nodes: 27
Residual mean deviance: 0.4575 = 170.7 / 373
Misclassification error rate: 0.09 = 36 / 400
3. 显示决策树
[plain] view plain copy
> plot(tree . carseats )
> text(tree .carseats ,pretty =0)
4.Test Error
[plain] view plain copy
//prepare train data and test data
//We begin by using the sample() function to split the set of observations sample() into two halves, by selecting a random subset of 200 observations out of the original 400 observations.
> set . seed (1)
> train=sample(1:nrow(Carseats),200)
> Carseats.test=Carseats[-train,]
> High.test=High[-train]
//get the tree model with train data
> tree. carseats =tree (High~.-Sales , Carseats , subset =train )
//get the test error with tree model, train data and predict method
//predict is a generic function for predictions from the results of various model fitting functions.
> tree.pred = predict ( tree.carseats , Carseats .test ,type =" class ")
> table ( tree.pred ,High. test)
High. test
tree. pred No Yes
No 86 27
Yes 30 57
> (86+57) /200
[1] 0.715
5.决策树剪枝
[plain] view plain copy
/**
Next, we consider whether pruning the tree might lead to improved results. The function cv.tree() performs cross-validation in order to cv.tree() determine the optimal level of tree complexity; cost complexity pruning is used in order to select a sequence of trees for consideration.
For regression trees, only the default, deviance, is accepted. For classification trees, the default is deviance and the alternative is misclass (number of misclassifications or total loss).
We use the argument FUN=prune.misclass in order to indicate that we want the classification error rate to guide the cross-validation and pruning process, rather than the default for the cv.tree() function, which is deviance.
If the tree is regression tree,
> plot(cv. boston$size ,cv. boston$dev ,type=’b ’)
*/
> set . seed (3)
> cv. carseats =cv. tree(tree .carseats ,FUN = prune . misclass ,K=10)
//The cv.tree() function reports the number of terminal nodes of each tree considered (size) as well as the corresponding error rate(dev) and the value of the cost-complexity parameter used (k, which corresponds to α.
> names (cv. carseats )
[1] " size" "dev " "k" " method "
> cv. carseats
$size //the number of terminal nodes of each tree considered
[1] 19 17 14 13 9 7 3 2 1
$dev //the corresponding error rate
[1] 55 55 53 52 50 56 69 65 80
$k // the value of the cost-complexity parameter used
[1] -Inf 0.0000000 0.6666667 1.0000000 1.7500000
2.0000000 4.2500000
[8] 5.0000000 23.0000000
$method //miscalss for classification tree
[1] " misclass "
attr (," class ")
[1] " prune " "tree. sequence "
[plain] view plain copy
//plot the error rate with tree node size to see whcih node size is best
> plot(cv. carseats$size ,cv. carseats$dev ,type=’b ’)
/**
Note that, despite the name, dev corresponds to the cross-validation error rate in this instance. The tree with 9 terminal nodes results in the lowest cross-validation error rate, with 50 cross-validation errors. We plot the error rate as a function of both size and k.
*/
> prune . carseats = prune . misclass ( tree. carseats , best =9)
> plot( prune . carseats )
> text( prune .carseats , pretty =0)
//get test error again to see whether the this pruned tree perform on the test data set
> tree.pred = predict ( prune . carseats , Carseats .test , type =" class ")
> table ( tree.pred ,High. test)
High. test
tree. pred No Yes
No 94 24
Yes 22 60
> (94+60) /200
[1] 0.77
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12