
这是一张灵异事件图。。。开个玩笑,这就是一张普通的图片。
毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的。
在这篇文章中,我将带着你了解一些基本的图片特征处理。data massaging
依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库、表、文本等中进行。这是如何对图片进行处理的呢?我们将看到图片是怎么存储在硬盘中的,同时我们可以通过使用基本的操作来处理图片。
导入图片
在python中导入图片是非常容易的。下面的代码就是python如何导入代码的:
代码解释:
这幅图片有一些颜色和许多像素组成,为了形象这幅图片是如何存储的,把每一个像素想象成矩阵中的每一个元素。现在这些元素包含三个不同的密度信息,分别为颜色红、绿、蓝(RGB)。所以一个RGB的图片就变成了三维的矩阵。每一个数字就是颜色的密度(RGB)
让我们来看看一些转化:
就像你在上面看到的一样,我们对三个颜色维度进行了一些操作转变。黄色不是一种直接表示的颜色,它是红色和绿色的组合色。我们通过设置其他颜色密度值为零而得到了这些变化。
将图像转换为二维矩阵
处理图像的三维色有时可能是很复杂和冗余的。如果我们压缩图像为二维矩阵,在特征提取后,它将变得更简单。这是通过灰度图像或二值化(Binarizing)图像。当图片显示为不同灰色强度组合时灰度图像比二值化(Binarizing)图像颜色更加饱满,而二值化(binarzing)只是简单的构建一个充满0和1的二维矩阵而已。
这里将叫你如何将RGB图片转变成灰度图像:
就如你所见,图片的维度已经降为了两种灰度值了,然而图片的特征在两幅图片中依然清晰可见。这就是为什么灰色图像在硬盘上存贮更加节约空间。
现在让我们来二值化灰色图像,这是通过找到阀值和灰色度像素标志(flagging the pixels of Grayscale)。在这篇文章中我已经通过Otsu‘s方法来找到阀值的,Otsu‘s方法是通过最大化两类不同像素点之间的距离来计算最优阀值的,也就是说这个阀值最小化了同类间的变量值。
模糊化图片
本文最后部分我们将介绍更多有关特征提取的内容:图像模糊。灰度或二值图像有时需要捕获更多的图像而模糊图像在这样的场景下是非常方便的。例如,在这张图片如果铁路轨道比鞋子更加重要,模糊处理将会添加跟多的值。从这个例子中我们对模糊处理变得更清晰。模糊算法需要将邻近像素的加权平均值加到周围每个颜色像素中。下面是一个模糊处理的例子:
对上面的照片模糊处理后,我们清楚地看到鞋已经与铁路轨道具有相同的密度等级。因此,在许多场景中这种技术非常方便。
让我们看一个实际例子。我们想在一个小镇的照片上统计的人数。但是照片上还有一些建筑图像。现在建筑背后的人的颜色强度会低于建筑本身。因此,这些人我们就难以计数。模糊处理场景后才能平衡建筑和人在图像中的颜色强度。
完整的代码:
image = imread(r"C:\Users\Tavish\Desktop\7.jpg")
show_img(image)
red, yellow = image.copy(), image.copy()
red[:,:,(1,2)] = 0
yellow[:,:,2]=0
show_images(images=[red,yellow], titles=['Red Intensity','Yellow Intensity'])
from skimage.color import rgb2gray
gray_image = rgb2gray(image)
show_images(images=[image,gray_image],titles=["Color","Grayscale"])
print "Colored image shape:", image.shape
print "Grayscale image shape:", gray_image.shape
from skimage.filter import threshold_otsu
thresh = threshold_otsu(gray_image)
binary = gray_image > thresh
show_images(images=[gray_image,binary_image,binary],titles=["Grayscale","Otsu Binary"])
from skimage.filter import gaussian_filter
blurred_image = gaussian_filter(gray_image,sigma=20)
show_images(images=[gray_image,blurred_image],titles=["Gray Image","20 Sigma Blur"])
总结
以上就是本文关于python实现图片处理和特征提取详解的全部内容,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28