京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python实现斐波那契数列的方法示例
斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下递归的方法定义:
F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 。
1. 元组实现
fibs = [0, 1]
for i in range(8):
fibs.append(fibs[-2] + fibs[-1])
这能得到一个在指定范围内的斐波那契数列的列表。
2. 迭代器实现
class Fibs:
def __init__(self):
self.a = 0
self.b = 1
def next(self):
self.a, self.b = self.b, self.a + self.b
return self.a
def __iter__(self):
return self
这将得到一个无穷的数列,可以采用如下方式访问:
fibs = Fibs()
for f in fibs:
if f > 1000:
print f
break
else:
print f
3. 通过定制类实现
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
elif isinstance(n, slice):
start = n.start
stop = n.stop
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L
else:
raise TypeError("Fib indices must be integers")
这样可以得到一个类似于序列的数据结构,可以通过下标来访问数据:
f = Fib()
print f[0:5]
print f[:10]
4.Python实现比较简易的斐波那契数列示例
先放一个斐波那契数列出来瞧瞧…
0 1 1 2 3 5 8 13 21 34 55 89 144 233...
首先给头两个变量赋值:
i, j = 0, 1
当然也可以这样写:
i = 0
j = 1
接着定个范围,就10000之内好了:
while i < 10000:
然后在while语句中输出i并设计逻辑:
print i,
i, j = j, i+j
在这里需要注意:“i, j = i, i+j”这条代码不能写成如下所示:
i = j
j = i+j
如果写成这样,j就不是前两位相加的值,而是已经被j赋过值的i和j相加的值,这样的话输出的数列会如下所示:
0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
正确的整片代码如下所示:
i, j = 0, 1
while i < 10000:
print i,
i, j = j, i+j
最后展示运行结果:
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
总结
以上就是关于利用Python实现斐波那契数列的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28