
【每周一期-数据蒋堂】非常规聚合
标准SQL中提供了五种最常用的聚合运算:SUM/COUNT/AVG/MIN/MAX。观察这几个运算,我们发现它们都可以看成是一个以集合为参数返回单值的函数,我们就先把这个共同点理解为聚合运算的定义,把集合变成单值,多个值变成一个值,也就是发生了"聚合“,所以叫聚合运算。
那么很显然,有集合的时候就可以应用聚合运算了,所以SUM/COUNT这些运算可以针对一个数据表(记录集合)实施。
分组运算的结果是一批分组子集,那么每个子集上也可以应用聚合运算,这也就是SQL的分组运算了。其实针对全集的聚合运算也可以理解为只分了一个组的特殊分组(也是个完全划分),这样理解后,我们可以认为聚合运算总是发生在分组运算之后(但分组运算后不一定总有聚合运算,前面已说过)。而且,还可以反过来说,只要被认定为是聚合运算(符合前述定义的运算),就一定可以用在分组之后。我们在下面会看到,这个理解将大幅度地扩展分组+聚合运算的应用范围。
除了这五种聚合运算外,有的数据库还提供了方差、标准差等聚合函数,其性质和这五种差不多,可以称为是常规的聚合运算。我们下面来研究业务上有意义的其它形式聚合运算。
1、返回记录
上述的常规聚合都是针对数值的运算,特别地,对于结构化数据来说,是针对某个字段(或表达式)的运算,返回值也是这些数值的运算结果。但有时候我们关心的不是结果数值本身,而是与结果数值相关的信息。
比如我们想从日志表中找出某个用户第一次登录时用的IP地址,而不是登录时刻。用标准SQL写这个运算大概是这样:
SELECT ip_address FROM LogTable WHERE user=? AND logintime=
(SELECT MIN(logintime) FROM LogTable WHERE user=?)
用子查询先计算出该用户的第一次登录的时刻,再查找出该时刻时用到的IP地址,这要把数据集遍历两次。
ORACLE提供了一个KEEP函数,可以不用子查询写出这样的运算:
SELECT MIN(ip_address) KEEP(DENSE_RANK FIRST ORDER BY logintime) FROM LogTable WHERE user=?
但是,我们关心的可能还不止是IP地址,还可能是日志表中的其它字段,比如所用浏览器、是否移动端等,其实就是关心最小值对应的那条完整记录。而由于SQL缺乏离散性,即使有KEEP函数,也不容易写出这种运算,要么每个字段分别用KEEP,要么还是用子查询遍历两次,都很繁琐。
如果有一个用于返回最大值/最小值对应记录而非值本身的聚合函数,那这个运算写起来就简单了,也只要遍历一次:
=LogTable.select(user=?).minp(logintime)
像前面说的,这样的聚合运算还可以用在GROUP中,比如找出每个用户首次登录的日志记录
=LogTable.group(user).(~.minp(logintime))
类似地,还可以有maxp方法用于返回最大值对应记录。
日志记录常常本来就是按事件发生时刻有序,利用这个特点时就不需要再用比较来计算最小值了,而是直接取出第一条即可。
=LogTable.select(user=?).first() // 聚合函数first返回第1个成员
在分组中也可以:
=LogTable.group(user).(~.first())
当然实际编码时也可以直接取集合成员,这里写成first只是为了强调可以把取某成员的动作理解为一种聚合运算。
这种运算较为常用,我们可以为group函数做一个选项:
=LogTable.group@1(user)
SQL建立在无序集合概念上,无法保证返回记录的次序,想写出这种运算就又需要人为制造序号后再用过滤条件来做。
2、返回集合
我们把上面的问题改一下:找出一群人中年龄最小的那些人的姓名。
和前述问题不同的是,同一个用户不会有多个相同的登录时间,但一批人中则可能有年龄相同的人,年龄最小的人可能不止一个。minp函数的返回值应当是一个集合才合理。
仔细观察我们在文章开始对聚合运算的定义,我们会发现,其实返回单值的要求并无必要,只要参数是集合,随便返回什么东西都可以认定为是聚合运算,这种定义下,返回集合的minp/maxp仍然可以作为聚合运算处理。
需要返回集合的聚合运算中,更常见是topN。
SQL并不把topN理解成一种聚合运算,而只是返回结果集时的一种修饰符。原理上,SQL会先把完整的结果集计算出来,然后再只取前N条返回。topN总是在排序动作之后,大集合的排序是个时间成本很高的动作,但其实只做topN并不需要全集的排序。这时候只能依靠数据库在工程上的优化,但这并不是总能做好的。另外,只作为结果集的修饰,那就不能把这个运算实施到分组子集上了,而且运算复杂化后优化也很难做了。
把topN理解成聚合运算后,一切都变得很轻松
=a=LogTable.select(user=?).top(logingtime,-2), a(2)-a(1) //某用户最后的两次登录时间间隔
=LogTable.groups(user;(a=~.top(logintime,-2),a(2)-a(1))) //每个用户最后的两次登录时间间隔
而且实施计算也不需要刻意地工程上优化,在分组后使用也能获得高性能。
topN也有返回记录的情况,即取出某个字段(表达式)在前N名的对应记录。和minp/maxp类似地,这需要再设计一个函数。
同样的,有序情况也会发生,像前面的日志计算,如果假定日志表已经针对事件时刻有序,那可以不必再用topN去做比较运算了。
=a=LogTable.select(user=?).last(2),a(2)-a(1) //聚合函数last(n)返回最后n个成员
=LogTable.groups(user;(a=~.last(2),a(2)-a(1)))
类似地,last函数也可以写成取集合成员的形式。
这里讨论了非常规聚合的两种常见情况,都是SQL不易支持的。当然按照定义还会有更多形式的聚合运算,即使这两种情况也还会有许多变种,比如取出排序位置居中的成员、取出针对某一字段的唯一值(DISTINCT)集合等。深入理解聚合运算及其与分组运算的关系,将能够扩展这些运算的应用范围,对计算的描述和实施都有不小的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04