京公网安备 11010802034615号
经营许可证编号:京B2-20210330
说明
随机森林是另一类可用的集成学习方法,该算法在训练过程中将产生多棵决策树,每棵决策树会根据输入数据集产生相应的预测输出,算法采用投票机制选择类别众数做为预测结果。
操作
导入随机森林包:
library(randomForest)
使用随机森林分类器处理训练数据:
churn.rf = randomForest(churn ~ .,data = trainset,importance = T)
churn.rf
Call:
randomForest(formula = churn ~ ., data = trainset, importance = T)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 4
OOB estimate of error rate: 5.27%
Confusion matrix:
yes no class.error
yes 245 97 0.28362573
no 25 1948 0.01267106
利用训练好的模型对测试集进行分类预测:
churn.prediction = predict(churn.rf,testset)
类似其它分类处理,产生分类表:
table(churn.prediction,testset$churn)
churn.prediction yes no
yes 111 7
no 30 870
调用plot函数绘制森林对象均方差:
plot(churn.rf)

随机森林的均方差
根据建立好的模型评估各属性的重要度:
importance(churn.rf)
yes no MeanDecreaseAccuracy MeanDecreaseGini
international_plan 68.9592890 54.118994 72.190204 50.35584
voice_mail_plan 18.8899994 15.832400 19.607844 10.44601
number_vmail_messages 21.3080062 16.262770 22.068514 19.05619
total_day_minutes 28.3237379 30.323756 39.961077 79.91474
total_day_calls 0.6325725 -1.131930 -0.802642 20.80946
total_day_charge 28.4798708 28.146414 35.858906 77.84837
total_eve_minutes 18.5242988 20.572464 24.484322 42.99373
total_eve_calls -3.3431379 -2.301767 -3.495801 17.45619
total_eve_charge 20.4379809 20.619705 24.489771 44.02855
total_night_minutes 0.9451961 16.105720 16.694651 22.93663
total_night_calls -0.3497164 2.202619 1.869193 19.94091
total_night_charge 0.1110824 15.977083 16.593633 22.22769
total_intl_minutes 17.3951655 20.063485 24.967698 26.05059
total_intl_calls 37.3613313 23.415764 35.497785 33.03289
total_intl_charge 16.7925666 19.636891 24.498369 26.60077
number_customer_service_calls 79.7530696 59.731615 85.221845 67.29635
调用varlmPlot函数绘制变量重要性曲线
varImpPlot(churn.rf)

变量重要性示例
调用margin及plot函数并绘制边缘累计分布图:
margins.rf = margin(churn.rf,trainset)
plot(margins.rf)

随机森林算法边缘累积分布图
还可以用直方图来绘制随机森林的边缘分布:
hist(margins.rf,main = "Margines of Random Forest for churn dataset")

边缘分布直方图
调用boxplot绘制随机森林各类别边缘的箱线图
boxplot(margins.rf ~ trainset$churn,main = "Margines of Random Forest for churn dataset by class")

随机森林类别边缘箱图
原理:
随机森林算法目标是通过将多个弱学习机(如单棵决策树)组合得到一个强学习机,算法的处理过程与bagging方法非常相似,假设当拥有N个特征数为M的样例,首先采用bootstrap对数据集进行采样,每次随机采样N个样本作为单个决策树的训练数据集。在每个节点,算法首先随机选取m(m << M)个变量,从它们中间找到能够提供最佳分割效果的预测属性。
然后,算法在不剪枝的前提下生成单颗决策树,最后从每个决策树都得到一个分类预测结果。
如果是回归分析,算法将取所有预测的平均值或者加权平均值作为最后刚出,如果是分类问题,则选择类别预测众数做为最终预测输出。
随机森林包括两个参数,ntree(决策树个数)和mtry(可用来寻找最佳特征的特征个数),而bagging算法只使用了一个ntree参数,因此,如果将mtry设置成与训练数据集特征值一样大时,随机森林算法就等同于bagging算法。
本例利用randomForest包提供的随机森林算法建立了分类模型,将importance值设置为“T”,以确保对预测器的重要性进行评估。
与bagging和boosting方法类似,一旦随机森林的模型构建完成,我们就能利用其对测试数据集进行预测,并得到相应的分类表。
randomForest包还提供了importance和varlmpPlot函数则可以通过绘制平均精确度下降或者平均基尼下降曲线实现属性重要性的可视化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16