京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析行业需要具备哪些技术 如何快速进入
大数据如此火爆的时代,各种人才倍受青睐。视野决定了境界和能力,而所处的环境又决定了视野。好多人不知道什么是数据分析师,认为会熟练使用Excel就是数据分析师,如果你还会使用Excel中的一些高级功能如透视和函数等等,可能别人就认为你是牛*的数据分析师了,如果你工作中还用到了VBA,(word天啊!),在别人眼中你就是数据分析大神了。真的是这样吗?诚然,单用Excel的确可以解决大部分的数据问题,但是作为一个数据分析师,你并不是一个基层的统计分析从业者,那么数据分析师应该是怎样的职业呢?
(一)数据分析师的职场之路
图1:数据分析职位分类
数据分析的职位分类按照数据处理的不同阶段分为数据采集、数据分析、与数据挖掘三种。其中数据采集的概念是对企业来说的,是jacky企业(航航数据)在做的事,包括原始数据源的采集和地理信息数据的采集,这里受众面太窄,就不一一说了,想了解的朋友可以私信我。
下面主要说下数据分析和数据挖掘的职位:
大家要记住一句话:数据分析的职位分为业务方向与技术方向两个方向,这两个方向决定了两条不同的职业规划和晋升途径,包括下面章节要说的数据分析的学习规划也跟这两个方向紧密相关。
1、业务方向
大家在招聘网站中搜索数据分析的职位,大概分为两类:辅助业务的数据分析职位和数据分析师职位。
1)辅助业务的数据分析:一般在零售业里职位设置较多,该职位一定要对业务烂熟于心,对业务有长时间的积淀和理解,用数据发现业务流程中的问题,并提出合理化的解决方案,分析数据是为整个商业逻辑去做支撑。细分职位包括:市场调查、行业分析和经营分析三类。
2)数据分析师:业务方向的数据分析师,该职位招聘时一定前面有一个限定词,什么数据分析师,归结起来分为三类:产品数据分析师,运营数据分析师和销售数据分析师。
2、技术方向
技术方向主要指数据挖掘方向,分为三类:数据挖掘工程师(机器学习)、数据仓库工程师(构架师)和数据开发工程师。在互联网和金融行业岗位设置较多
普遍来说:技术方向的基础岗的工资薪酬要比业务岗的薪酬高一个等级,但是做到管理岗的话,在中国,业务岗的薪酬比技术岗的薪酬要高。
(二)数据分析从业者需具备的核心能力
我认为,数据分析从业者要具备四种核心能力:1、基础科学的能力;2、使用分析工具的能力;3、掌握编程语言的能力;4、逻辑思维的能力
图2:数据分析核心能力体系
1、基础科学的能力
可以说,在数据决策的时代,数据分析几乎渗透到企业的每个业务环节中,行业数据分析报告更是淋漓满目,发布报告的有的是世界500强企业,有的是知名的数据洞察咨询公司,jacky做为第三方数据评估机构的从业者,在看到可视化效果越来越绚丽的同时,我也忧心忡忡,大多数的数据分析报告:逻辑不见了,故事线没有了,统计学支撑没有了,金在其外,败絮其中。
统计学,数学,逻辑学是数据分析的基础,是数据分析师的内功,内功不扎实,学再多都是徒劳。
掌握统计学,我们才能知道每一种数据分析的模型,什么样的输入,什么样的输出,有什么样的作用,开始我们并不一定要把每个算法都弄懂。
如果我们要做数据挖掘师,数据能力是我们吃饭的饭碗。如果你没有数学能力,用现成的模型也好,模块也好,也能做,但一定会影响你的技术提升,当然更影响你的职位晋升。
2、使用分析工具的能力
数据分析工具:SQL、SPSS、SAS、R、EXCEL等等吧,都必须掌握并且会应用,毕竟企业需要的不是学者而是应用型人才。
3、掌握编程语言的能力
不会Python、不会R,说你懂数据分析谁都不信。
4、逻辑思维的能力
逻辑思维对于数据分析来说特别重要,不单单是数理逻辑这块,还要有逻辑学的知识。反映商业数据里,大家可以理解为去搭建商业框架或者说是故事线,有逻辑的推进,结果才会另人信服。
下面补充下做数据分析的流程逻(参考知乎网友,有改进,非原创):
1)提出假设
2)验证假设(统计方法)
4)清洗和整理数据(R / Python Pandas / PySpark)
5)可视化(Excel / R ggplot2 / Python matplotlib)
6)展示给非技术人员(PowerPoint / Tableau / iPython Notebook / R Markdown)
(三)2017,数据分析学习规划
任何一门技术或学科都有其内部规律,需要有计划,有先后,循序渐进来学,jacky跟大家分享下润禄数据学院的一些经验:2017,数据分析的学习规划(因个体差异,仅供参考)
下图:橙色区域代表数据采集板块,蓝色区域代表数据分析板块,绿色区域代表数据挖掘板块。
图3:数据分析学习规划(从入门到中级)
1、统计学(业务方向)与SQL(技术方向):首要必会技能
任何数据分析师从事业务方向的工作都必须会统计学,统计学的学习最好辅助SPSS或其他SAS来学,做到数据分析基本功扎实,兼顾实战性。
任何数据分析师从事技术方向的工作都必会SQL,不单是数据分析师,每一个运营、产品经理、尤其是互联网行业,一定要会SQL,基本知名互联网公司的产品经理都能写SQL。
学习中,要掌握SQL的基础语法、中级语法和常用函数,结合关系数据库系统(Oracle Database、SQL Server、DB2等)来学习SQL语句,找好方法,真的不难。
2、Python与R:不分伯仲,都要掌握
Python主要掌握基础语法,pandas操作、numpy操作、sklearn建模,学会用python编写网络爬虫爬取数据,等等。
R语言就是为了统计而存在的语言,我们要掌握R语言的基础语法、数据管理、数据挖掘建模与评估等。
以上是我们第二阶段要学的技能。
3、数据可视化
有了Python、和R的基础,我们可以就可以学习数据可视化了。运营和产品都需要学习可视化,可视化说白了,就是画图,但做为数据分析师来说,我们不能用EXCEL 来实现可视化,因为它的局限性太大了。这里也不建议花太多时间学习给非专业人士展示的Tableau,有1个小时学会Tableau足够。
Python中可视化的工具有matplotlib,seaborn,ploltly;
R中可视化工具有plot基础库、ggplot2
随心所欲,用Python和R,你就知道做数据分析工作是多么爽一个事
4、数据挖掘
这里知道要掌握基本概念,知道数据挖掘时做什么的,知道它与数据分析相比有什么不同
5、监督学习、非监督学习、模型评估
Model建模,知道模型建好后应该怎样去评估,掌握怎样用一些定量的指标,数据,数值来衡量模型建好后到底有多准确,或者说到底有多错误。模型评估的指标或计算方式选择正确与否,能够直接影响到整个项目获模型是否有效。
6、以上这些只是数据分析的入门,还有... ...
机器学习,文本与自然语言处理,分布式计算工具SPARK.... ...
数据分析的路上,你准备好了吗?2017,跟我一起,来逆袭吧
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29