京公网安备 11010802034615号
经营许可证编号:京B2-20210330
成为数据科学家的7本入门推荐书籍
过去的几年中我一直在阅读各式各样的数据科学方面的书籍资料,上述7本是我个人最为欣赏的,它们都是我认为的将数据科学的基础原理阐述的通俗易懂的很有价值的资料。书读百遍,其义自见,即使你初看之下觉得晦涩难懂,相信多读几遍也就慢慢理解了。另外如果你觉得单纯阅读有点无聊的话,也可以带着看看我之前推荐的10个免费在线课程,相辅相成,相信你会学习的更快。
1. Lean Analytics?—?by Croll & Yoskovitz
第一本书是教会你如何建立基本的以商业思维去使用这些数据,虽然这本书本身定位是面向初学者,不过我觉得你可以从中学到更多。你可以从本书中学到一条基本准则、6个基础的线上商业形态以及隐藏其后的数据策略。
2. Business value in the ocean of data?—?by Fajszi, Cser & Fehér
如果说Lean Analytics是关于面向初学者讲解商业逻辑加上数据,那么本书是面向大型公司来讲解这些内容。听上去好像没啥新鲜的,不过往往初创企业与独角兽之间面对的问题是千差万别,本书中会介绍譬如保险公司是如何进行定价预测或者银行从业者们又在面临怎样的数据问题。
3. Naked Statistics?—?Charles Wheelan
这本书我一直很是推荐,因为它不仅仅面向数据科学家,而是为任何一个行业的人提供基本的统计思维,这一点恰恰是我认为非常关键的。这本书并没有太多的长篇大论,而是以一个又一个的故事形式来讲解统计思维在公司运营中的重要作用。
4. Doing Data Science?—?Schutt and O’Neil
这算是最后一本非技术向的书了吧,这本书相较于上面三本更上一层楼,他深入了譬如拟合模型、垃圾信息过滤、推荐系统等等方面的知识。
5. Data Science at the Command Line?—?Janssens
在介绍本书之前首先要强调下,千万不要畏惧编程,学习些简单的编程知识能够有助于你做更多有趣的事。你可以自己去获取、清洗、转化或者分析你的数据。不过我也不会一上来就扔出大堆的编程知识,我建议还是从简单的命令行操作开始学起,而本书正是介绍如何只用命令行就帮你完成些数据科学的任务。
6. Python for Data Analysis?—?McKinney
Python算是近几年来非常流行的数据分析的语言了吧,人生苦短,请用Python。这本书算是个大部头了,有400多页吧,不过它首先为你介绍了Python的基础语法,因此学起来不会很困难吧。
7. I heart logs?—?Jay Kreps
最后一本书则是短小精悍,加起来才60多页吧。不过它对于数据收集和处理的技术背景有很好的概述,虽然很多分析家或者数据科学家并不会直接用到这些知识,但是至少你能够理解技术人员们可以用哪些架构去解决数据问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29