
商业智能(BI)努力的是企业与数据之间的“最后一公里”,而新一代商业智能云平台要做的,则是企业和数据之间的“额外一公里”,让你跟数据的关系从0距离变成负距离。深入,再深入一点。
传统BI:企业与数据的“最后一公里”
根据Tableau发布的《2017最需关注的十大云趋势看点》,由于各种设备与云技术的发展,大量数据都能够轻松存储在云端。企业的关注点从“如何获取数据”,变成了“如何分析数据”。企业需要能够无缝连接、集成不同云托管数据的分析工具,来弥合自己与数据之间“最后一公里”的距离。
以前,企业的选择是商业智能(Business Intelligence),它可以帮助企业收集、管理和分析数据,将这些数据转化为知识或洞察(insight),然后分发到企业各处。
但是,在Gartner发布的《2017BI和数据分析软件市场统计报告》中,发现了这样的趋势:
(1)传统的商业智能平台市场占有率正在逐年降低。从2013年的49%,降至2015年的41%。而与之相反的,是新一代商业智能平台,它的市场占有率从7%上升至14%,几乎“吃”掉了传统BI失掉的所有市场。
(2)根据预测,未来10年将有更多的分析工具/商业智能产品部署于云。
究竟新一代商业智能“新”在哪儿?为什么有能力蚕食传统BI的市场?Gartner2015年提出“Modern BI Platform”这一概念时,曾经从五个方面描述了传统BI与新一代BI之间的区别:
从上图中可以看出,新一代BI最大的变化,就是把商业分析全流程的中心从专家转向了业务人员,IT部门不再是数据采集、准备与内容创作的主力或灵魂,仅在分析的流程中提供一小部分的支持工作;以前业务人员跟数据之间隔着一个IT部门,像隔着一座大山;新一代商业智能,允许业务人员直接跟数据对话、直接创建分析内容、自由的用可视化进行数据探索,还可以彼此协作。
新一代BI赋予了业务人员与数据直接对话的能力,不要小瞧这个进步。这几乎是推翻了传统商业智能的产品框架,回到“让谁用”、“怎么用”的源头,把整个工具做了一个“民主化”的革新。
民主的好处,于社会不用多言;于数据,则是弥合了从信息到行动之间的距离。对于企业来说,这就是那“额外的一公里”——发生在企业内部的、全员与数据共舞的美妙。
“额外一公里”的before我们都经历过、或正在经历着;现在,让我们来具体解释展现一下“额外一公里”的after——
* 新一代商业智能中,因为全员可以访问数据,所以无论部门、职能、级别,每个人都可以得到自己需要的数据;
* 因为全员可以自己处理数据,所以每个人都能在最短时间内得到自己想要知道的答案,节省大量与IT部门或“第三者”解释需求、等待满足的时间;
* 因为全员可以自由地对数据进行可视化的交互分析,所以任何疑问答案都是“立等可取”的,而那些常规型的报告,也不用重复制作,打开界面就可以看到了,跟数据的亲密关系又进一层;
* 因为有了“数据协作”,全员基于唯一真实的数据展开工作,部门与部门之间不再是孤岛,从彼此扔锅到展开合作,不再是梦想。
以上所有的一切,都大大缩短了从信息到行动的距离。
新一代BI为“全员数据化”赋能,还有一个利好,就是让每一个“决策者”都有据可依,要知道,这可是一个企业人人都是“决策者”的时代。美国一家上市公司是这样形容的:“每个人都在做决策。每个小时,每一天。CXO们并不是影响运营和盈利的唯一因素:几乎所有的员工都可以通过他们的工作习惯、他们使用(或滥用)的技术、对突发事件及挑战的应对方式等,对运营产生影响。事实上,‘决策者’这个术语已经可以适用于任何人。”
1936年,查理-卓别林执导并主演的《摩登时代》里,曾经把工人比作城市大机器中的一个零件,在设定好的固定程序下每天重复。今天,工业社会已发展成为信息社会,我们的工作比过去需要更多的主动与创新,但企业依旧是一个环环相扣的生产线,每一个环节都影响着企业的最终盈利,每一个环节都不容出错。
因此,我们为什么不把最适合这个时代的利器,交到每一个环节的负责人手中呢?
这就是新一代BI存在的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18