京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		数据分析的8个流程与7个常用思路
在产品运营过程中,数据分析具有极其重要的战略意义,是产品优化和产品决策的核心大脑。因此做好数据分析,是产品运营中最重要的环节之一。
那么如何做好支付的数据分析呢?以下梳理出数据分析的8步流程,以及常见的7种分析思路。新手在启动数据分析前,最好跟主管或数据经验较丰富的童鞋确认每一步的分析流程。
一、数据分析八流程:
为什么分析?
首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,这次短信方式的数据分析,为什么要做这个分析。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。
分析目标是谁?
分析目标是谁? 要牢记清楚的分析因子,统计维度是订单,还是用户,还是金额,还是用户行为。避免把订单当用户算,把用户当订单算(上周运营同学真实案例),算出的结果是差别非常大的。
想达到什么效果?
通过分析各个维度的用户,订单,找到真正的问题。例如这次的XX通道的分析,全盘下线,或维持现状不动,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现用户精细化运营已经非常必要了。
需要哪些数据?
支付的数据,茫茫大海,数据繁多,用“海”来形容一点都不为过。需要哪些源数据?付费总额,付费人数?新老用户维度?付费次数?转移人数?留存率?用户特征?画像?先整理好思路,列一个表。避免数据部门同学今天跑一个数据,明天又跑一个数据,数据部门同学也会比较烦。
如何采集?
直接数据库调取?或者交给程序猿导出? 自己写SQL?运营同学不妨都学一下SQL,自力更生。
如何整理?
整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。
如何分析?
整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对用户很了解,对渠道很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。运营同学比较容易聚在某个点上转圈走不出来。
如何展现和输出?
数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:
(1)、折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。
(2)、柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。如支付宝与微信覆盖率差别。
(3)、堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。例如我们需要表示各个支付方式的人数及总人数时。
(4)、线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。
(5)、条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。
(6)、饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。
(7)、复合饼图:一般是对某项比例的下一步分析。
(8)、母子饼图:可直观地分析项目的组成结构与比重。例如上次短信支付能力用户中,没有第3方支付能力的用户,中间有X%比例是没银行卡,X%比例是没微信支付账号等。
图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。
有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。
在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。
二、数据分析七思路:
简单趋势
通过实时访问趋势了解产品使用情况。如总流水,总用户,总成功率,总转化率。
多维分解
根据分析需要,从多维度对指标进行分解。例如新老用户、支付方式、游戏维度、产品版本维度、推广渠道、来源、地区、设备品牌等等维度。
转化漏斗
按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。常见的转化情境有下单率,成功转化率等。
用户分群
在精细化分析中,常常需要对有某个特定行为的用户群组进行分析和比对;数据分析需要将多维度和多指标作为分群条件,有针对性地优化产品,提升用户体验。例如我们这次对短信这类用户,短信里又有第3方和无第3方支付能力的,需要再进行分群的运营。
细查路径
数据分析可以观察用户的行为轨迹,探索用户与产品的交互过程;进而从中发现问题、激发灵感亦或验证假设。例如我们这次对新用户的运营,也非常有意思。
留存分析
留存分析是探索用户行为与回访之间的关联。一般我们讲的留存率,是指“新增用户”在一段时间内“回访”的比例。通过分析不同用户群组的留存差异、使用过不同功能用户的留存差异来找到产品的增长点。
A/B 测试
A/B测试就是同时进行多个方案并行测试,但是每个方案仅有一个变量不同;然后以某种规则(例如用户体验、数据指标等)优胜略汰选择最优的方案。数据分析需要在这个过程中选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。
不单是支付的数据分析,其他的产品运营数据分析流程和思路也一样适用,只是支付数据相对其他产品而言,维度很多,以及组合的维度也非常多,因此就需要更清晰的思路和大局观,避免陷入到数据海洋中。
	
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28