京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据恐惧症
大数据是人类文明的又一个破坏性发明
现在小崔和方舟子还在争辩,转基因是世界人口爆炸的福音还是对人身体的伤害?这个辩论,时间会给出答案,但是大数据更是一个值得大家争辩的事情,因为大数据涉及了我们的生活习惯和社会法则。大数据带来的副作用,大大超过了以前人类发明的范畴。
商业的大数据就是通过电子化数据的收集,包括手机轨迹,通话,信息,上网行为,购买,旅游,金融,等全方位的数据收集,对你进行分类、判断,推销。作为国内电商时代的开启者,淘宝上云集了数量惊人的数据:每一笔订单不仅包含顾客姓名、收货地址、下单时间等基本信息,甚至连顾客什么时候开始浏览某一件宝贝,跟售前客服讨价还价的过程,在几点几分下单成交,都有全部记录。通过这些信息记录,可以鉴别出你喜欢的东西,推断你的身份、收入、银行存款、家庭事业状况等等。在互联网日益繁荣、BAT三巨头触角无所不达的今天,越来越多人的工作、生活、社交都逃不开百度、腾讯、阿里、360等大小互联网企业甚至个人的全方位数据监控。
有许多人认为掌握了越多的数据,越详细的数据,就有机会通过“大数据”分析法来获得一个金矿。但当这些网站比你妈还更了解你的时候,你感觉到的不是关怀,而是恐怖。
现在的大数据分析,缺乏取样标准,不代表真实的因果关系。
在传统的统计学里面,最重要是数据的采样。比如一种药物的有效性,需要两组对比人群,在严密的实验条件下,长期跟踪,才能都出结论。现在的大数据分析,往往是数据的堆积和简单的关联分析。从严格的科学来讲,是一门伪科学。因为数据只是数据,只是过去,简单的数据积累不说明任何问题,不能真正判断一个人,预测一件事。如果基于大数据武断营销,那就是真正的恐怖了。从以下几个方面,就可以看出为什么大数据会让你害怕:
1. 害怕身份被盗用
在移动互联网时代,我们的朋友更多出现在网上。社交网络、QQ、微信、微博取代了面对面的人际交流,虚拟交流也在改变世界和人。基于大数据的应用流行之时,将有大量的人借用和盗用网络身份,达到个人目的。也许你从来没有离开老家,你的网络大数据却涉嫌犯罪。
2. 害怕数据造假
在一切看数据说话的今天,每个人、每个企业和商家或多或少都在改变数据。因为各种利益关系错综复杂,报出来的数据往往都应景而异。大数据时代,有意的网络数据造假也能成为一个商业领域,用来帮助别有用心的人或商家制造数据。
3. 害怕数据框定
比大数据更复杂的还是人。从心理学的角度,让人做出选择,就意味着要舍弃其他的可能性,这是一件异常困难的事情。人的认识和选择会应为各种原因,产生跳跃性的变化。如果按照数据分析,把人丢进一个箩筐终生定格,据此给他不光是特定类的商品,进而决定他能否从事某件事,限制他的网络视野,也是很不合理的。
例如,把大数据作为广告精准投放标准,虽说有一定合理性,但也并不绝对,这是由于人类的购买心理十分复杂。比如说有个消费者只是浏览了一辆汽车,跟着是汽车广告通过各种方式和渠道的狂轰滥炸,除了骚扰,并没有效果。
4. 害怕数据不公和数据歧视
完全依赖大数据进行分析、对人进行分类,其实将触及社会不公和歧视。作为商家,考虑到经营成本、营销利润和效率,其实暗地里都会打着各种小九九,而不是表面上把各类消费者一视同仁。毋庸置疑,高端消费者是各类企业的最爱,而低端消费者却让企业皱眉。但现在呢?每个人的消费记录和各种数据都被电子化的方式采集和收集着,一举一动逃不过大数据的记录。对保险公司营销员来说,你这个人的所有信息数据可以一览无余,不用你开口,他已经判断出是不是需要让你参保、保费标准等等;消费数据记录和售后服务记录,甚至都能让卖家挑选买家,把你列入顾客黑名单也不是不可能。
不可避免的,一旦成为数据穷人,那么就会面临歧视服务,所有消费者都是平等的这句话将成为历史。
5. 害怕数据垄断
目前的商业格局是:两方数据垄断势力正在形成,一方是国营企业,如电信、电力、医院等,一方是以BAT为中心的互联网大佬。特别是后者,在广泛收集数据之后,已经以大数据为依托,开始布局全行业的垄断性的经营,范围包括电子商务,教育,医疗,物流等。而这些垄断一旦形成,将大大降低中国企业的创新能力和竞争能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01