京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS = 数据测量的类型
数据测量类型
查看IBM SPSS Modeler 帮助文档,解释如下:
• 默认值。具有未知存储类型和值的数据(例如,由于其尚未被读取)将显示为<默认值>。
• 连续。用于描述数字值,如范围 0 - 100 或 0.75 - 1.25。连续值可以是整数、实数或日期/时间。
• 分类。用于字符串值(可取的值的确切数量未知时)。这是一种非实例化数据类型,表示有关数据存储类型和用法的所有可用信息均未知。读取数据后,测量级别将为标志、名义或无类型,具体取决于“流属性”对话框中指定的最大名义字段数量。
• 标志。标志字段用于显示具有两个不同值的数据。
表示存在或不存在一个特性,如 true 和 false、Yes 和 No 或 0 和 1。所用值可能有所不同,但其中总会有个值代表“真”值,另一个代表“假”值。标志的存储类型数据可表示为文本、整数、实数、日期、时间或时间戳。
真。指定条件成立时字段的标志值。假。指定条件不成立时字段的标志值。
标签。为标志字段中的每个值指定标签。这些标签将按照您在“流属性”对话框中选择的选项出现在多个位置,如图形、表格、输出和模型浏览器中。
扩展:“字段选项”—“导出”设置导出为“标志”选项
Derive Flag 节点用于指明特定条件,如高血压或客户帐户停用。对于每条记录都会创建一个标志字段,当条件为真时,会在字段中添加代表真的标志值。
真值。指定针对满足以下指定条件的记录要在标志字段中包括的值。缺省值为 T。
假值。对于那些不满足以下指定条件的记录,指定其标志字段中的值。 缺省值为 F。
以下情况时为真。指定某个 CLEM 条件,用于评估每条记录的某些值,并为记录赋予真值或假值(定义如上)。请注意,对于非假数字值,会将真值赋予记录。
注意:要返回空字符串,您应该输入一对引号,并且中间不包含任何内容,如 ""。例如,空字符串通常可用作假值,以使真值在表中更为明显。类似地,如果希望某个字符串值在其他情况下被视为数值,应使用引号
• 名义。用于描述具有多个不同值的数据,其中的每个值都被视为集合的一个成员,如 small/medium/large。名义数据可具有任何存储—数值、字符串或日期/时间。请注意,将测量级别设置为名义不会自动将值更改为字符串存储。
扩展:设置派生名义选项
Derive Nominal 节点用于执行一组 CLEM 条件,以确定每条记录满足的条件。当每条记录满足某个条件时,会将一个值(指示满足哪组条件)添加到新的导出字段。
缺省值。指定不满足任何条件时要使用的值。
将字段设置为。指定满足某个特定条件时要在新字段中输入的值。列表中的每个值都有一个关联条件,该条件由用户在相邻列中指定。
若此条件为真。为集合字段中要列出的每个成员指定条件。使用表达式构建器在可用的函数和字段中进行选择。可以使用箭头和删除按钮对条件进行重新排序或删除。
条件的工作原理是对数据集中特定字段的值进行检验。检验每个条件时,都会为新字段分配上述指定值,以指示满足哪个条件(如果有)。如果不满足任何条件,则会使用缺省值。
• 有序。用于描述具有顺序固定的不同值的数据。例如,工资类别或满意度排序可以归类为有序数据。顺序由数据元素的自然排列顺序定义。例如,1, 3, 5 是某个整数集合的默认排列顺序,而 HIGH, LOW, NORMAL(按字母升序)是某个字符串集合的顺序。使用有序测量级别可以将一组分类数据定义为有序数据,以进行可视化处理、模型构建以及导出到将有序数据识别为不同类型的其他应用程序(如 IBM® SPSS® Statistics)。您可以在任何能够使用名义字段的位置使用有序字段。此外,可以将任何存储类型(实数、整数、字符串、日期、时间等等)的字段定义为有序。
• 无类型。用于不属于任何上述类型的数据,具有单个值的字段,或集合的成员数超过定义的最大值的名义数据。当测量级别为包含许多成员(如帐号)的集合时,这种类型也将十分有用。当您为字段选择无类型时,角色将自动设为无,记录 ID 作为唯一的替代项。默认的集合最大容量为 250 个唯一值。可在“流属性”对话框(可通过“工具”菜单访问)的“选项”选项卡上调整或禁用该数字。
可以手动指定测量级别,也可以由软件读取数据并根据所读取的值确定其测量级别。
此外,如果有多个连续数据字段需视为类别数据,可以选择一个选项来转换它们。请参阅 主题 转换连续数据 详细信息。
字段角色设置:
字段的角色用于指定其在模型构建过程中的用法 - 例如,字段是输入还是目标(预测的对象)。
注意:“分区”、“频率”和“记录标识”角色只能分别应用到单个字段。
可用的角色如下:
目标。字段将用作机器学习的输出或目标(模型将尝试预测的字段之一)。
两者。字段将被 Apriori 节点同时用作输入和输出。所有其他建模节点都将忽略该字段。
无。机器学习将忽略该字段。测量级别已设置为无类型的字段将在角色列中自动设置为无。
分区。指明字段用于将数据分区为单独的样本(用于训练、测试,也可用于验证)。该字段必须属于实例化集合类型,具有两个或三个可能值(在“字段值”对话框中定义)。第一个值表示训练样本,第二个值表示测试样本,第三个值(如果存在)表示验证样本。所有其他值都将被忽略,且不能使用标志字段。请注意,要在分析中使用分区,必须在相应的模型构建或分析节点的“模型选项”选项卡中启用分区。启用分区时,会将对于分区字段具有空值的记录从分析中排除。如果已在流中定义多个分区字段,那么必须在每个相应建模节点的“字段”选项卡中指定单一分区字段。如果数据中不存在适合的字段,您可以使用“分区”节点或“派生”节点进行创建。请参阅主题分区节点,了解更多信息。
分割。(仅名义、有序和标志字段)指定为字段的每个可能值构建一个模型。
频率。(仅数字字段)设置此角色允许将字段值用作记录的频率加权因子。仅 C&R 树、CHAID、QUEST 和线性模型支持此功能;所有其他节点将忽略此角色。在支持此功能的建模节点的“字段”选项卡上,选择使用频率权重以启用频率加权。
记录标识。此字段将用作唯一记录标识。大多数节点都会忽略此特征;但它受线性模型支持,并且是 IBM Netezza 数据库内挖掘节点所必需的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27