
数据如何为新零售赋能
关于新零售,阿里给出的定义是“以消费者体验为中心的,数据驱动的泛零售业态”,这里道出了两个关键点,一个是“以消费者体验为中心”,另外一个是“数据驱动”。
笔者采访了多名从事数据、零售行业内人士,本文将立足新零售,浅谈数据是如何为其赋能?
数据的价值
互联网的本质在于用户经营、流量经营,而数据在这其中是最为基础的一环。
首先,数据的价值在于,可以驱动业务的增长。实际上不仅仅是在零售行业,每一个行业对于数据的应用,数据对于驱动业务本身起到至关重要的作用。
以盒马鲜生的第一家店金桥店为例,目前线上部分的销售额已经超过了50%,这样的营收模型对于传统零售商来讲是可遇不可求的。实际上这个结果并非一蹴而就。
其次,深入进行数据管理与挖掘,可以更好的服务用户。这里面包含了两个维度的用户,一是服务于企业内部,实现数字化管理。 二是在消费者层面,可以提供个性化、多元化的服务。
在传统零售行业,企业内部管理的效率非常低,总部统一下达任务往往要着急各个分店店长统一参会来传达。而数字化的好处在于,极大提高了信息同步的即时性。
而在消费者层面,掌握更多的消费行为数据以后,平台方可以借助这些开展商品的个性推荐以及精准营销。
此外,数据本身或者基于数据分析得到的结论是具有价值的。我们可以看到,越来越多的企业也在以数据的标签来标榜自己。比如滴滴出行、摩拜OFO等出行类工具,虽未上市,但估值都在数十亿、上百亿美金。如果单纯看其本身的业务模型来看,虽然可以实现盈利,但不足以支撑如此高的估值。
实际上更多的投资者看重的,是其出行数据背后,有着更大的商业价值。以零售行业,通过这些出行数据,可以做出更好的选址决策,基于人群的年龄、职业、喜好等画像分析,也可以帮助零售商在商品层面以及运营层面做出更好的策略。
由经验思维到数字化思维
上文有提到过,对于新零售业态,最核心的一个特征就是打通了线下和线上,这样带来的直接结果就是,新零售业态可以采集到的数据更多。
传统零售商在数据方面一直不够重视,一位在零售领域从事多年的高管曾这样表达:
“这些数据看上去并没有什么用处,特别是北上广一线城市,店面覆盖的3公里范围,人员流动性比较大,另外有些人的消费习惯你很难去改变。”
实际上这也是大部分传统零售人的思维,我们可以把它看作是经验思维,比如货架怎么摆放,商品怎么选择、动线怎么设计。但对于新零售业态,在数字化经营思路下,这些数据并非如想象中那么无迹可寻。
在传统零售店面,商品完全依赖供应链以及价格体系,促销活动做了很多,究竟是谁买的单却很难清楚,包括店面的消费动线设计也是完全以货为中心,消费者在厨具摊位买完咖啡壶,还要跑到食品区去购买咖啡。此外,诸如天气等社会公共信息等,其对于到店客流的影响也会十分显著,传统零售商仅仅通过销售数据是很难捕捉到消费者的行为变化,知其然并不知其所以然。
换做新零售,基于消费者为中心的业态,可以借助门店的wifi探针,蓝牙感知技术,可以自动识别他们的手机或者其他联网设备获得数据,可以在不惊扰客户的情况下,调取其资讯并快速提醒前台导购或服务人员。
消费者在哪些货架停留了多久、经历怎样的动线,这些数据对于店面的反向管理都起到至关重要的作用,直接影响了店面的仓储管理、买点捕捉硬件设备的位置。
下一站,人工智能?
2000年以前,互联网发展初期的数据,以结构化文本为主的粗颗粒度数据,以天为单位响应时间,数据结构也十分单一;
进入到2000年以后,互联网、web飞速发展,真正意义上的结构型数据开始出现,特别是随着社交媒体发展,多元化的数据包括文本、音频、视频,小颗粒度的数据呈现爆发式增长;
在2008年以后,移动互联网时代又将数据推向更高的维度,传感器、GPS等便携设备的出现,数据开始以秒为响应单位,数据量达到PB级别,这也催生了大数据生态圈Hadoop这种分布式处理的软件框架。
而随着更多的实体零售走向互联网产业升级,数据的体量将更加庞大,颗粒度也将更细小,更先进的算法逻辑,更强大的处理能力成为行业所需。
去年亚马逊推出Amazon Go,利用了机器视觉智能识别技术,让无人便利店成为大家津津乐道的话题。包括阿里近期即将初推出无人超市“淘咖啡”,透过其购物流程来看,也极有可能应用到该技术。
虽然这样的方案随着店铺规模扩大,系统的计算量将大幅飙升,对GPU提出巨大的挑战。但至少目前,在数据方面,零售的终极必将走向人工智能、机器学习这条路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11