京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python数据分析常用函数笔记
1、生成随机数列表
import numpy as np
array = np.random.permutation(20)
结果:
array([12, 18, 16, 8, 10, 17, 1, 2, 9, 7, 3, 6, 15, 13, 11, 5, 4, 0, 14, 19])
2、合并两个pandas.DataFrame数据集
import pandas as pd
data1 = {'A1':['A','B','C','D','E','F','G'],
'A2':[1,2,3,4,5,6,7]}
data2 = {'A1':['H','I','J','K','L','M','N'],
'A2':[8,9,10,11,12,13,14]}
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
frames = [df1, df2] #将两个DataFrame数据放入列表
df = pd.concat(frames)

3、pandas.DataFrame保存CSV文件
df.to_csv("D://df_test.csv", index = False)
index=False,表示不保存索引值,若为True,则保存索引值
4、 # 查看列的名字
df.columns
5、查看所有列的统计描述,包括平均值,标准差,最大最小值,以及25%,50%,75%的 percentile 值
df.describe()
6、Pandas 与 matplotlib 配合使用进行作图
# 首先打开图表行内显示
%matplotlib inline
# 生成600个随机数(符合正态分布),存放在 Series 或 DataFrame 的某一列中
nd = pd.Series(np.random.randn(600))
# bins 表示直方图的方块数
# range 表示图表显示的范围
nd.hist(bins=100, range=(-5,5))
结果如图所示:

7、按轴进行排序
train_df[['job', 'education', 'age', 'marital']].sort_index(axis=1, ascending=False).head()

8、DataFrame 合并
df1 = pd.DataFrame(...)
df2 = pd.DataFrame(...)
df3 = pd.DataFrame(...)
li = list()
li .append(df1)
li .append(df2)
li .append(df3)
df = pd.concat(li)
9、写入、读取Excel文件
写入Excel文件:
df.to_excel('foo.xlsx', sheet_name='Sheet1')
从Excel文件中读取:
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
10、读取CSV文件
iris = pd.read_csv(iris_filename, sep=',', decimal='.', header=None, names= ['sepal_length','sepal_width','petal_length','petal_width', 'target']
除了文件名,read_csv函数还可以指定分隔符(sep)、小数点的表达方式(decimal)、是否要标题行(本例中,header=None;通常情况下,如果有标题行,header=0)和变量名称(若全部列检索,则该项可省略)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07