
2018年中国大数据产业8大趋势前瞻
刚刚过去的2017年,大数据产业持续呈高速增长,各地方政府纷纷开启数字化转型之路,大数据被广泛应用于政府监管、社会治理、经济转型等诸多实践领域。2018年,在建设“数字中国”的大趋势下,作为数字经济转型排头兵的大数据产业将会有哪些新的发展趋势?
数字化生产力将显著提升
2017年年末,就产业创新发展、数字经济建设、国家创新治理、民生保障与改善、国家数据安全五大方面做了前瞻性布局,并强调要推动实施国家大数据战略,加快建设数字中国,更好地服务我国经济社会发展和人民生活改善。
五大前瞻性布局,为大数据产业未来发展指明方向,以数据为关键要素的数字经济,可以推动大数据产业持续稳健发展,实现创新突破,持续释放数字红利,将对“数字中国”建设产生深远影响。关于“数字中国”的重要指示,预示着2018年数字经济将进入黄金爆发期,各领域数字生产力将会有显著提升。
数据市场交易额持续攀升
2017年,大数据产业集中爆发,数据体量呈几何状增长。以贵阳大数据交易所为例,2017年,贵阳大数据交易所汇集了超过150PB的海量数据,包括全国所有政府部门的公开数据,以及225家数据源的优质数据,并将这些单个行业或领域呈链条状串起来的数据解构、交叉、融合,从而形成块数据。与此同时,贵阳大数据交易所与100多个地区,包括省、市,进行了数据流通交易合作,助力打通政府部门、企事业单位之间的数据壁垒,实现海量数据的合作开发和综合利用,有效促进各级政府数据治理能力的提升。
随着国家大数据战略实施,数字经济将在2018年蓬勃发展,数据体量将随之更加扩容,以贵阳大数据交易所数据交易体量为范本,预测未来一年数据市场交易额将会进一步攀升。
政府大数据应用迎来集中爆发期
我国实施国家大数据战略,加快完善数字基础设施,推进数据资源整合和开放共享,保障数据安全,加快建设数字中国。
2017年1月,工信部发布《大数据产业发展规划(2016-2020年)》;5月,水利部发布《关于推进水利大数据发展的指导意见》;6月,最高检发布《检察大数据行动指南(2017-2020)》。截至2017年6月底,国务院、国家发改委以及农业部、国土资源部、国家林业局、交通运输部、水利部等部委均发布了大数据战略文件。随着大数据产业政策继续加速出台,政府数据开放共享取得突破,大数据建设不断深入,创新体系不断完善。
紧跟政策与战略布局,九次方大数据联合60余城市启动“推进器”计划,扶持大数据技术应用公司共同开发政府数据应用。可以预见,到2018年,政府大数据应用将集体迎来集中爆发期。
数据资产运营将成为政府数据价值释放主要途径
当前,贵阳、广东、云南、甘肃、福建、内蒙古、新疆、青海、湖北、南昌、上海、苏州、南通、济宁、青岛、哈尔滨、秦皇岛、丽江、潍坊、重庆等60个地区,包括省、自治区、直辖市、地级市等以数据资产运营为途径,释放地方政府数据价值,赢得区域竞争先机。
数据资产运营是规范、控制、管理和提供数据及信息资产的一系列业务职能,包括开发、执行、指定和监督有关数据的计划、政策、方案、项目、流程、方法和程序,从而控制、保护、交付和提高数据资产的价值。数据资产运营面向全领域数据的全生命周期,其核心思路是将数据对象以资产的标准和要求进行运营与管理。
到2018年,政府及各行各业非结构化数据呈爆发式增长,对数据资产运营与管理的复杂度要求更高。大数据资产运营将有可能通过降低数据使用的成本,提高以数据智能分析、预警、预测、决策的效率,让数据资产运营与管理成为大数据时代中各行业竞争力的重要来源。
机器学习成为普遍工具
以数据科学为基础的机器学习是人工智能的核心,是计算机智能化的基础,其应用遍及人工智能的各个领域,如数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。近年来,深度学习已经开始渗透到各个领域:客服机器人、垃圾邮件过滤、人脸识别、语音识别、个性化推荐……
随着大数据分析能力的不断提高,2018年机器学习将继续在智能分析方面发挥重要作用,从而扩展了机器学习。例如,帮助机器从现有的复杂数据中学习规律,以预测未来的行为结果和趋势。在某一行业智慧化应用中,用机器学习的方法对数据进行分析建模,最为关键。特别是在庞大的数据面前,如何将数据进行重组、整合、分析,进而转化为人工智能产品,是行业迈向进智能化的重要挑战。
到2018年,80%的数据科学家会将机器学习纳入其工具包中。到2019年,机器学习将成为实现需求,大数据与人工智能的结合,将克服人类在交通、环境、健康医疗等领域面临的一系列发展困境,从而开创经济社会发展的全新范式。
数据安全性将有质的提升
2017年,全球数据泄露事件层出不穷。6月份,美国爆发大规模选民信息泄露事件;7月份,美国最大无线通信公司Verizon遭遇大规模数据泄露事件;9月,美国三大信用局之一的Equifax数据库遭到黑客攻击并泄露,美国1.43亿用户的敏感数据受到安全威胁;9月下旬,全球四大会计师事务所之一的德勤公司曝出超过500万份内部邮件疑遭泄露。数据安全已成为全球性话题。
2018年,各国将加大数据安全保障。尤其在我国,数字经济以数据为关键要素,以安全为前提。为此,我国先后成立了中央国家安全委员会、中央网络安全和信息化领导小组、中央军民融合发展委员会等机构,2017年,《网络安全法》正式实施。可以看到,新时代国家网络安全的领导机制、制度设计和法律法规等顶层设计已经确立。到2018年,我国数据安全性将得到极大提高,有利于数字经济的加快推动与发展。
数据可视化迎来黄金发展期
2018年,数据可视化和数据发现将成为一股重要趋势席卷政府及企业。数据发现的范畴已经扩大,不仅包括对数据分析和关系的理解,还包括呈现数据的方式,以挖掘更深层次的商业洞见。其结果就是,作为一种把数据变成可用洞见的方法,可视化模型越来越受欢迎。日益改善和演变的可视化模型已经成为从大数据中获取洞见的必要组成部分。
人脑能高效地处理视觉图像。在这个过程中,大脑使用了潜意识,让决策者可以通过迅速扫描图像来处理信息。数据可视化将会得到越来越广泛的应用,因为它们可以帮助人们快速接受和消化最相关的信息。将图形和图表与功能强大且易于使用的业务分析相结合,意味着每个部门的用户不仅可以看到他们的组织如何实时执行,而且还可以采取必要的行动,防止小问题变成更大的问题,并挖掘新的机会。
行业应用将成大数据发展“重头戏”
当前,我国各产业都在深入挖掘大数据的价值,研究大数据的深度应用。大数据在各行业的全面深度渗透将有力地促进产业格局重构,驱动生产方式和管理模式变革,推动制造业向网络化、数字化和智能化方向发展,成为中国经济新一轮快速增长的新动力和拉动内需的新引擎。
目前,我国各行各业已积累的丰富数据资源,国内大数据创新创业企业积极研发各领域大数据应用平台,同时,从政府出发,整合宏观调控、税收监管、商事管理、信用体系建设、维稳、公共安全等数据资源,加快数据共享开放,提升政府综合治理能力,自上而下,由内到外,从政府到企业,打造全产业链平台,加快政府治理、行业转型。到2018年,将形成大数据全产业链生态应用系统的完善与建立。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11